Всё самое интересное в одном журнале. Эйнштейн был заядлым курильщиком Что изобрел альберт эйнштейн

Альберт Эйнштейн является одним из самых известных ученых двадцатого века. Его заложили основу для новой отрасли физики, а E=mc 2 Эйнштейна по эквивалентности массы и энергии — одна из самых известных формул в мире. В 1921 году он получил Нобелевскую премию по физике за вклад в теоретическую физику и эволюцию квантовой теории.

Эйнштейн также хорошо известен как оригинальный свободный мыслитель, выступал по целому ряду гуманитарных и глобальных проблем. Внес свой вклад в теоретическое развитие ядерной физики и поддержал Ф. Д. Рузвельта в запуске Манхэттенского проекта, но позже Эйнштейн выступил против использования ядерного оружия.

Эйнштейн, рожденный в еврейской семье в Германии, в молодости переехал в Швейцарию, а затем, после прихода к власти Гитлера, переселился в США. Эйнштейн был поистине глобальным человеком и одним из бесспорных гениев двадцатого века. А теперь давайте обо всем по порядку.

Отец Эйнштейна, Германн, родился в 1847 году в швабской деревне Бухау. Германн, еврей по национальности, имел склонность к математике, учился в школе недалеко от Штутгарта. В университет он не смог поступить в связи с тем, что большинство университетов были закрыты для евреев и в последствии начал заниматься торговлей. Позже Герман и его родители переехали в более процветающий город Ульм, который пророчески имел девиз “Ulmenses sunt mathematici”, что в переводе значит: “люди Ульма — математики”. В возрасте 29 лет Германн женился на Полине Кох, которая была на одиннадцать лет младше него.

Отец Полины, Юлий Кох, построил большое состояние на продаже зерна. Полина унаследовала практичность, остроумие, хорошее чувство юмора и могла заразить смехом кого угодно (эти черты она успешно передаст своему сыну).

Герман и Полина были счастливой парой. Их первенец родился в 11:30 в пятницу, 14 марта 1879 года, в Ульме, город, который в то время присоединился, наряду с остальной частью Швабии, к немецкому Рейху. Первоначально, Полина и Германн планировал назвать мальчика Авраам, как его дедушку по отцовской линии. Но потом они пришли к выводу, что это имя будет звучать слишком по еврейски и они решили сохранить начальную букву А и назвали мальчика Альбертом Эйнштейном.

Стоит обратить внимание на интересный факт, который навсегда запечатлеться в памяти Эйнштейна и существенно повлиял на него в будущем. Когда маленькому Альберту было 4 или 5 лет он заболел и его
отец, чтобы мальчик не скучал принес ему компас. Как потом скажет Эйнштейн — он был так взволнован, от тех таинственных сил, которые заставляли магнитную иглу вести себя так, как будто на нее влияли скрытые неизведанные поля. Это чувство удивления и пытливость ума, остались в нем и мотивировало его на протяжении всей жизни. Как он говорил: «Я все еще помню или, по крайней мере, я верю, что могу вспомнить — что тот момент произвел глубокое и неизгладимое впечатление на меня!».

Примерно в том же возрасте его мама привила Эйнштейну любовь к скрипке. Первое время ему не нравилась жесткая дисциплина, но после того как он ближе познакомился с произведениями Моцарта, музыка стала казаться одновременно магический и эмоциональный для мальчика: “Я верю, что любовь — лучший учитель, чем чувство долга, — сказал он, — по крайней мере, для меня”. С этих пор по заявлениям близких друзей, когда ученый сталкивался с трудными задачами, Эйнштейн отвлекался на музыку и она помогала ему сосредоточится и преодолевать трудности. Во время игры, импровизируя, он размышлял о проблемах, и вдруг “он внезапно обрывал в середине игру и взволнованно уходил работать, будто к нему приходило вдохновение”, как говорили близкие.

Когда Альберту исполнилось 6 лет и пришлось выбирать школу, его родители не переживали, что поблизости не было еврейской школы. И он отправился в большую католическую школу по соседству, в Петершуле. Будучи единственным евреем среди семидесяти учеников в своем классе, Эйнштейн хорошо учился, прошел стандартный курс по католической религии.

Когда Альберту исполнилось 9 лет, он перевелся в среднюю школу недалеко от центра Мюнхена, гимназии Леопольда, которая была известна как просвещенный институт, который усиленно изучал математику и науку, а также латынь и греческий язык.

Для того, чтобы быть принятым в Федеральный технологический институт (позже переименованном в ETH) в Цюрихе, Эйнштейн сдал вступительные экзамены в октябре 1895 года. Однако, некоторые из его результатов были недостаточны и, по совету ректора, он отправился в «Kantonsschule» в городе Аарау, чтобы улучшить свои знания.

В начале октября 1896 года Эйнштейн получил свидетельство об окончании школы и вскоре после этого поступил в Федеральный технологический институт Цюриха по специальности преподаватель по математике и физике. Эйнштейн, был хорошистом и закончил учебу в июле 1900 года. Затем он работал ассистентом в Политехническом институте в Шуле и других университетах.

В период с мая 1901 года по январь 1902 года он учился в Винтертуре и Шаффхаузене. Вскоре он переехал в Берн, столицу Швейцарии. Для того, чтобы зарабатывать на жизнь, он давал частные уроки по математике и физике.

Альберт Эйнштейн личная жизнь

Эйнштейн был дважды женат, сначала на своей бывшей ученице Милевой Марич, а затем на своей двоюродной сестре Эльзе. Его браки были были не очень удачными. В письмах Эйнштейн выражал угнетение, которое он испытал в своем первом браке, описывая Милеву как властную и ревную женщину. В одном из писем он даже признался, что хотел, чтобы его младший сын Эдуард, у которого была шизофрения, никогда не рождался. Что касается его второй жены Эльзы, он называл их отношения союзом удобства.

Биографы, изучая такие письма, считали Эйнштейна холодным и жестоким мужем и отцом, но в 2006 году вышло в свет около 1400 ранее неизвестных писем ученого и биографы изменили взгляд на его отношения к его женам и семье в положительную сторону.

В более свежих письмах мы можем обнаружить, что Эйнштейн сострадал и сочувствует своей первой жене и детям, он даже передал им часть своей денежной суммы от выигрыша Нобелевской премии мира в 1921 года.

Что касается второго брака, Эйнштейн, по-видимому, открыто обсуждал свои дела с Эльзой, а также держал ее в курсе своих путешествий и мыслей.
По словам Эльзы — она осталась с Эйнштейном, несмотря на его недостатки, объяснив свои взгляды в письме: “Такой гений должен быть безупречным во всех отношениях. Но природа не ведет себя так, если она дает экстравагантность, то она проявляется во всем.”

Но это не значит, что Эйнштейна считал себя образцовым семьянином, в одном из писем ученый признал что: “Я восхищаюсь своим отцом за то, что за всю свою жизнь он остался с одной женщиной. В этом деле же я потерпел неудачу дважды”.

В общем при всей своей бессмертной гениальности Эйнштейн в личной жизни был обычным человеком.

Эйнштейн интересные факты из жизни:

  • С раннего возраста Альберт Эйнштейн ненавидел национализм любого рода и предпочитал быть «гражданином мира». Когда ему было 16 лет, он отказался от своего немецкого гражданства и в 1901 году стал гражданином Швейцарии;
  • Милева Марич была единственной женщиной-ученицей в секции Эйнштейна в Цюрихском политехническом институте. Она была увлечена математикой и наукой и была хорошим физиком, но она отказалась от своих амбиций, выйдя замуж за Эйнштейна и став матерью.
  • В 1933 году ФБР начало вести досье на Альберта Эйнштейна. Дело разрослось до 1427 страниц различных документов, посвященных сотрудничеством Эйнштейна с пацифистскими и социалистическими организациями. Дж. Эдгар Гувер даже рекомендовал выслать Эйнштейна из Америки, применив статьи закона об исключении иностранцев, но решение было отменено Госдепартаментом США.
  • У Эйнштейн была дочка, которую, по всей вероятности, он никогда не видел лично. Существование Лизерли (так звали дочь Эйнштейна) не было широко известно до 1987 года, пока не была опубликована коллекция писем Эйнштейна.
  • Второй сын Альберта, Эдуард, которого они ласково называли «Тет», имел диагноз шизофрения. Альберт никогда не видел своего сына после того, как он иммигрировал в США в 1933 году. Эдуард умер в возрасте 55 лет в психиатрической клинике.
  • Фриц Габер был немецким химиком, который помог перебраться Эйнштейну в Берлин и стал одним из его близких друзей. В Первую мировую войну Габер разработал смертельный газообразный хлор, который был тяжелее воздуха и мог стекать в окопы, сжигать горло и легкие солдат. Габера иногда называют «отцом химической войны».
  • Эйнштейн, изучая электромагнитные теории Джеймса Максвелла, обнаружил, что скорость света была постоянной, этот факт не был известен Максвеллу. Открытие Эйнштейна было прямым нарушением законы движения Ньютона и привело Эйнштейна к разработке принципа относительности.
  • 1905 год известен как «Год чуда» Эйнштейна. В этом году он представил докторскую диссертацию и 4 из его работ были опубликованы в одном из самых известных научных журналов. Опубликованные статьи имели названия: Эквивалентность материи и энергии, специальная теория относительности, броуновское движение и фотоэлектрический эффект. Эти статьи в конечном итоге изменили саму суть современной физики.

Альберт Эйнштейн – человек XX века по версии журнала «Time». Его работыперевернули развитие фундаментальной физики и наш взгляд на мир. Но одной теорией его гений обойтись не смог – Эйнштейн также является автором многих патентов на изобретения в различных странах. И даже дизайна блузки.

Человек столетия

В конце двадцатого века журнал «Time» предложил выдающимся политикам, общественным активистам и деятелям искусства выбрать человека столетия. По итогам был составлен список из ста самых влиятельных людей, и возглавил его Альберт Эйнштейн.

Удивляться не приходится: двадцатый век общепризнанно стал веком науки, и вклад Эйнштейна в нее трудно переоценить. Он изменил наш взгляд на пространство и время, вещество, энергию, создал новую теорию гравитацию. Немногим удалось, завоевав популярность прижизненно, сохранять ее в течении стольких лет и в настоящее время.

«Драмкружок, кружок по фото...»

Но удивительно незаметно для широкой общественности развивалась и другая сторона жизни Альберта Эйнштейна. Будучи великим физиком-теоретиком, он также был изобретателем и получил более пятидесяти патентов в разных странах.

Основную часть времени Эйнштейн, конечно, посвящал теоретической физике. Но в свободное время он работал над решением математических проблем в других областях или практических задач. Среди его главных работ можно выделить следующие: охлаждающую систему, разработанную вместе с Лео Сзилардом, систему воспроизведения звука в соавторстве с Рудольфом Голдшмидтом и автоматическую камеру с Густавом Баки. Что еще более удивительно, Эйнштейн является обладателем патента на дизайн блузы.

Помимо охлаждающей системы, остальные патенты Эйнштейна не получили широкого распространения и представляют собой исключительно историческую значимость. Но, обо всем по порядку.


Схема холодильника Эйнштейна-Сзиларда.

Безопасный холодильник

Первые патента Эйнштейна были посвящены охлаждающим системам или простыми словами, холодильникам. С 1926 по 1933 год он работал над этой проблемой совместно с Лео Сзилардом, выдающимся физиком венгерского происхождения, участником Манхеттенского проекта.

Базовый принцип работы холодильника прост: некоторая охлаждающая жидкость циркулирует вокруг объекта и забирает у него тепло - таким образом происходит охлаждение. Чаще всего в качестве охлаждающей жидкости выступает сжиженный газ. Выполнив свою функцию, газ нагревается и переводится в большую нишу, где, расширяясь, снова охлаждается. Затем охладитель сжижается компрессором и процесс начинается заново.

Во времена Эйнштейна в качестве охлаждающего газа использовались токсичные диоксид серы, метилхлорид и аммиак. Случаи отравления и даже смерти целых семей были нередки. Эйнштейн воспринял одну из таких трагедий близко к сердцу и задался целю создать холодильник, в котором не было бы движущихся и токсичных частей, убрав компрессор и токсичные газы.


Альберт Эйнштейн и Лео Сзилард.

Электромагнитное сердце

Основой холодильника Эйнштейна и Сзиларда стал электромагнитный насос, без прокладок и затворок, которые могут дать течь или сломаться: вместо этого они предложили концепцию человеческого сердца, которое качает кровь по организму за счет сокращения и растяжения мышц. Сплав калия и натрия под действием переменного магнитного поля совершает периодические движения, сжижая и расширяя охлаждающий газ.

Сзилард и Эйнштейн подали более 45 заявок на патенты в шести разных странах, но распространения их охлаждающая система не получила. Прототип оказался очень шумным, а последовавшая в 30-х годах Великая депрессия в целом подпортила благосостояние многих производителей. К тому же, с внедрением нетоксичного фреона отпала необходимость повышать безопасность холодильников. Изобретение Эйнштейна и Сзиларда, однако, позже нашло свое применение в 50-х годах, в технологии ядерных реакторов-размножителей.


Патент Альберта Эйнштейна и Рудольфа Голдшмидта.

Акустический слуховой аппарат

В 1922 году к Эйнштейну за экспертным мнением по поводу одной из своих разработок обратился Рудольф Голдшмидт, немецкий инженер и изобретатель. С тех пор они находились в постоянном контакте и в 1934 году запатентовали «Аппарат электромагнитного воспроизведения звука».

История этого изобретения такова: знакомая Эйнштейна, выдающаяся певица Ольга Эйснер стала терять слух, что является настоящей трагедией для любого музыканта. Эйнштейн попросил помощи Голдшмидта, чтобы создать для нее новый тип звукового аппарата.

В результате Эйнштейн и Голдшмидт запатентовали изобретение со следующим описанием: «Устройство, специально разработанное для воспроизведения звука, в котором изменения электрического тока создают движение намагниченного тела вследствие магнитострикции». Магнитострикция – явление, возникающее, например, если плотно обвить железный сердечник проводом и пустить сквозь него ток. Провод создает магнитное поле, которое, в свою очередь, меняет форму сердечника. Вибрации сердечника будут соответствовать изменению силы тока.

Предполагалось передавать вибрации сердечника через некоторого рода мембрану, которая прикреплялась бы к черепу – создать электро-акустический слуховой прибор. К сожалению, дальнейшего развития изобретение Эйнштейна-Голдшмидта не получило, а впоследствии получили развитие электронные слуховые аппараты, которые способны во много раз усиливать звуковые волны. Необходимость в электро-акустических технологиях отпала.

Схема камеры Эйнштейна-Баки.

Первая самонастраивающаяся камера

Вместе со своим давним другом Густавом Питером Баки Эйнштейн изобрел самонастраивающуюся камеру. Это произошло за несколько лет до того, как Кодак представил миру Super Six-20, известную как первая автоматическая камера - хотя стоит отметить, что Кодак и Эйнштейн-Баки использовали разные принципы работы. Камера стала изобретением, в котором Эйнштейн впервые использовал собственные физические наработки, а именно открытое им явление фотоэффекта, за которое он и был удостоен Нобелевской премии по физике в 1921 году.

Камера была запатентована в 1936 году, ее главным отличием была «адаптация к количеству света, попадающему на фотопластинку, в зависимости от освещенности и фотографируемого объекта». В ней свет попадал на фотоэлектрическую ячейку, которая вырабатывает электрической ток под действием света. При этом между ячейкой и основной линзой находился барабан с различными затемняющими пластинами. Количество попадающего на фотоячейку света определяло угол, под которым должен повернуться барабан, и какой именно фильтр нужен в данных условиях.

Блуза Эйнштейна.

И даже дизайнер?

Удивительно, но факт – Эйнштейна интересовал и дизайн одежды. В 1935 году Густав Баки в своем письме пожаловался ему, что Эмиль Майер, поверенный по делам Эйнштейна и Баки, подал заявку на патентование непромокаемой одежды без их ведома.

Возможно, эта заявка в итоге была аннулирована. Однако, как показывают записи, в 1936 году в США Эйнштейн получил патент на дизайн блузы. Модель «Альберт Эйнштейн» представлена на рисунке, и главными ее отличительными чертами были заявлены боковые прорези, также служившие рукавами, и центральная часть, идущая от воротничка к талии. К сожалению, доподлинно неизвестно, сколько экземпляров было пошито и кто красовался в блузе от именитого физика.

Главная тайна Эйнштейна

В этом году исполнилось 95 лет самой великой и самой спорной теории Альберта Эйнштейна - Общей теории относительности

В жизни, если постараться и немного повезет, можно достичь многого. Можно стать генералом, великим спортсменом, известным «шоуменом» и даже президентом. И только гением стать нельзя. Им надо родиться. Недавно в мировой сети был проведен опрос ученых-физиков, в котором попросили назвать лучшего среди них. Первое место в рейтинге, занял... Альберт Эйнштейн.

Он родился в 1879 году и стал первенцем в семье не слишком удачливого коммерсанта и дочки хлеботорговца. Его отец, Герман Эйнштейн, был человеком практического склада ума. А мать, Полина, тонкой натурой. Она любила музыку, литературу. Будущего ученого в детстве обучали игре на скрипке, но смычок вызывал в нем ярость. Только с годами он проникся чувством к этому инструменту, став поклонником Моцарта.

Эйнштейн рос странным ребенком, любил одиночество, часто нервничал. Если при нем дети играли в солдат или громко маршировали, он начинал плакать. В школе его считали страшной тупицей и тугодумом. Как-то раз учитель физики бросил ему в сердцах: «Из такой бездари ничего путного не выйдет», и поначалу это предсказание сбывалось: с первой попытки Альберт провалился на вступительных экзаменах в знаменитый цюрихский «Политехникум», куда поступил лишь со второй попытки.

На лекциях Эйнштейн сидел с замкнутой, внешне «мрачноватой» сербской студенткой Милевой Марич. У девушки был туберкулез суставов, из-за чего она хромала. Однако Милева отличалась недюжинным умом, имея большие способности в области математики. Мать будущего ученого считала ее «генетически неполноценной», друзья удивлялись их взаимной симпатии, но вопреки всем разговорам молодые люди сблизились, а в 1901 году поженились.

Их первый ребенок, девочка по имени Лизерль, родилась в том же году. К большому несчастью для родителей она оказалась умственно отсталой, страдала от рождения болезнью Дауна. Научная деятельность молодоженов не оставляла им времени на малышку. Ее отдали на воспитание в дом бабушки с дедушкой Марич, где она умерла от скарлатины в полуторагодовалом возрасте.

В 1905 году Эйнштейн работал экспертом патентного бюро в Цюрихе. Молодые люди жили крайне трудно, сильно нуждались. У Альберта появились болезни желудка, печени, став хроническими. Не выдержав испытаний, их брачный союз распался. Главные идеи теории относительности, которые обсуждались раньше вместе, окончательно сформулированы им были после того, как они разошлись. На это ушло 10 лет его жизни - с 1905 по 1916 год.

Теорию, ставшую величайшим открытием прошлого столетия, поначалу не приняли даже деятели науки. Что уж было говорить о простых смертных? Ее не понимал никто, досаждая ему часто просьбами объяснить, что это такое? Раздосадованный бесконечными приставаниями, он как-то сказал одной женщине: «Представьте себе, что 10 человек мучительно долго объясняют вам что-то. Много это или мало?

«Много», - ответила дама.

«А если во всем мире только 10 человек понимают теорию?», - спросил Эйнштейн.

Такое отношение к новому учению было вполне обоснованным: оно давало совсем иное «восприятие» мира. К тому же слово «относительность» вызывало у всех ассоциацию с известным философским изречением: «все в мире относительно». Но ученый писал о другом. Эйнштейн впервые ввел понятие четырехмерного пространства, добавив к привычному трехмерному измерению параметр времени, обосновал, что пространство и время - понятия относительные, а время - может изменять свой «ход», ввел понимание искривленного пространства.

Между тем, нобелевского лауреата не раз обвиняли в плагиате, считая, что некоторые приводимые в его теории формулы, были ранее выведены другими учеными. Так, известная формула Е=mс2, с которой начались исследования в области разработки атомной бомбы, была открыта малоизвестным ученым-самоучкой Олинто де Претто, родившимся в итальянском городке Скио в 1857 году. Главным занятием неизвестного физика было управление имениями семьи, а в свободное время он занимался наукой, делая между делом гениальные открытия.

Были и другие исследователи, предвосхитившие «теорию относительности». Есть также гипотеза, что математический аппарат Эйнштейну помогла разработать его бывшая жена Милева Марич. Косвенным подтверждением этому служит то, что уже после развода он отдал ей часть гонорара за Нобелевскую премию.

Возможно, некоторые факты действительно имели под собой место. Жаль лишь только, что пишущие на эту тему в погоне за сенсацией забывают, что нобелевский лауреат никогда не говорил, что был первым, кто сказал: «мяу». Основная заслуга его в том, что своим гением он сумел подняться над привычным пониманием мира, над математическими расчетами и выкладками, дав совершенно иное (физическое и философское) понимание «пространства- времени».

Что же подвинуло ученого к столь непривычному толкованию привычных вещей? Дать однозначный ответ на этот вопрос трудно. В своих автобиографических записках Эйнштейн писал: «Где-то там был этот огромный мир, существующий независимо от нас, людей, и стоящий перед нами как огромная вечная загадка, доступная, однако, по крайней мере, частично, нашему восприятию и нашему разуму. Изучение этого мира манило как освобождение...».

Интересно, что до 12 лет Альберт был глубоко религиозным. Позже религия разочаровала его. “Чтение научно-популярных книжек,- рассказывал он,- привело меня вскоре к убеждению, что в библейских рассказах многое не может быть верным. Следствием этого было прямо-таки фантастическое свободомыслие, соединенное с выводами, что молодежь умышленно обманывается государством; это был потрясающий вывод. Такие переживания породили недоверие ко всякого рода авторитетам и скептическое отношение к верованиям и убеждениям, жившим в окружавшей меня тогда социальной среде”.

Ученого стала интересовать философия, особенно труды Канта. В его словах не раз звучали мысли из разных философских учений. В то же время «теорию относительности» нельзя считать новой философией миро устройства. В первую очередь, это научный труд. В своем понимании Вселенной Эйнштейн не выходил за пределы Солнечной галактики.

Признание ждало его в 1919-м, когда астрономы подтвердили правильность вывода о том, что сила тяжести отклоняет свет, вызывая искривление пространства. 29 мая, во время полного солнечного затмения, британские астрономы на экваторе и в Южной Америке измерили отклонение света, испускаемого звездами, от прямолинейной траектории. Величина смещения в точности совпала с предсказанной теоретическими выкладками. Эйнштейна причислили к разряду гениев, подобных Сократу, Аристотелю и Ньютону.

Приход в Германии к власти фашистов вынудил ученого к эмиграции. В знак протеста в марте 1933 года Альберт вышел из состава Прусской академии наук и поселился в бельгийском курортном городке Лекок-Сюр-Мер, но уже в октябре покинул Европу навсегда, переехав в далекую Америку. Здесь он заново воссоздал рукописи своих работ. Библиотека Конгресса США приобрела их за 6 миллионов долларов. Вскоре ученый стал популярным и состоятельным человеком, его «теория» получила всемирную известность.

Произошедшие перемены Эйнштейн объяснял так: «Раньше считали, что, если каким-нибудь чудом все материальное вдруг исчезнет, то пространство и время останутся. Согласно же теории относительности, с вещами вместе исчезнут пространство и время». Наверное, с такой постановкой вопроса могли бы поспорить некоторые ученые, однако вступать в публичную полемику никто не стал.

Получив признание, Эйнштейн начал выступать с лекциями в разных местах, его засыпали всевозможными предложениями и званиями (профессорскими и академическими), теорию относительности обсуждали в светских салонах и Голливуде. Как-то раз Чарли Чаплин, пригласивший физика на один из банкетов, остроумно интерпретировал гостю приветствие толпы: «Они восторгаются мной, потому что я делаю понятное всем. Они восторгаются вами, потому что вы делаете не понятное никому!»

Но жизнь полна парадоксов. Чем больше Альберт обретал всемирную известность и популярность, тем больше его собственная жизнь становилась окутанной тайной.

Началась 2-я мировая война. В 1943 году на одной из баз ВВС США в Филадельфии ученый провел невиданный эксперимент. На эсминце «Элдридж» с помощью специальных установок были развиты мощные, меняющие величину и направление электромагнитные поля, и тогда... на глазах изумленной публики корабль медленно пропал с экранов радара.

Некоторые горячие головы тут же посчитали, что эсминец переместился в параллельные миры. Позже этот случай в ярких красках был описан во всевозможных публикациях, книгах, журналистских материалах. Рассказывалось о том, что с членами экипажа стали происходить непонятные вещи: кто-то из моряков скоропостижно скончался, кто-то стал участником «параномальных» событий, а кто-то переместился во времени. Выискалась газетная вырезка тех лет, повествующая о том, как матросы, сошедшие с корабля, буквально растаяли на глазах очевидцев.

Что здесь было больше - правды или вымысла? Скорее вымысла, хотя «нет дыма без огня». Руководство ВМФ США дало официальное опровержение всем слухам по поводу эксперимента, первоначальная задача которого не сулила неожиданности. Военные специалисты воюющих стран стремились сделать свои корабли и самолеты малозаметными для локаторов противника. Поэтому возникла идея создать электромагнитное поле такой напряженности, при которой световые лучи свернутся в кокон, делающий объект невидимым для человека и приборов. Расчеты генераторов «невидимости» поручили сделать Эйнштейну - сильнейшему теоретику в этой области, который с 1943 по 1944 год состоял на службе в морском министерстве США.

Результаты эксперимента стали неожиданными для самого ученого, который вряд ли задумывался над параллельными мирами и «иными» измерениями. Ему была поставлена чисто военная задача, которая была им блестяще выполнена. Однако талантливая научная теория не редко превосходит идеи автора. Учение Эйнштейна оказалось в пол шага от теории устройства всей Вселенной, а не только Солнечной галактики.

Еще в 1916 г., всего через несколько месяцев после того, как Эйнштейн опубликовал свои уравнения гравитационного поля, немецкий астроном Карл Шварцшильд нашел их точное решение, которое, как оказалось впоследствии, описывает геометрию пространства-времени вблизи идеальной «черной дыры». Это решение Шварцшильда описывает сферически симметричную «черную дыру», характеризующуюся только массой.

Сегодня для ученых уже является аксиомой утверждение, что искривленное пространство, замкнутое в гравитационный коллапс, образует так называемую «сферу Шварцшильда», или «черную дыру», в которой может быть заключена целая Вселенная. Но что там в действительности? Дорога «во времени», пройдя по которой можно переместиться из прошлого в будущее, параллельный мир, где оказался эсминец «Элдридж», или неземная Цивилизация, откуда прилетают к нам НЛО?

Ответить на этот вопрос пока никто не может. Однако в военных институтах и закрытых лабораториях над этим давно работают, приходя к разным, порой противоречивым выводам. Сначала физики выяснили, что если такие пространственно-временные «проходы» в Космосе даже существуют, проникнуть в них все равно невозможно, поскольку вокруг них существует некий «горизонт событий», сквозь который «не прорваться» из нашего мира. Этот «горизонт» служит границей, через которую не может выбраться наружу луч света.

Между тем, новые исследования в 1988 году неожиданно показали, что этот «горизонт событий» можно убрать, если «границу» заложить материей с отрицательной энергией, которая, существует в вакууме, где периодически то возникают, то исчезают виртуальные частицы с разной энергией, в том числе с энергией ниже «среднеарифметического» уровня, или «отрицательной».

«Экзотическая материя», как ее иронично назвали физики, обладающая отрицательной энергией, существует в природе «виртуально», пока ее не научились получать. Но реальность существования такой «материи» подтверждена экспериментально и доказана теоретически, поэтому сегодня серьезные астрономы и физики рассматривают эти пространственно-временные «дыры» как реальное средство транспортировки летающих объектов Земли.

23 мая 2003 г. в журнале Physical Review Letters появилась статья группы американских ученых под руководством известного теоретика Мэтта Виссера из Вашингтонского университета, в которой математически доказывается, что даже незначительное количество «экзотической материи» будет вполне достаточно, чтобы сделать «черные дыры» проходимыми.

Любопытно, что мысли о «проходимости» во времени, были высказаны еще автором «теории относительности», согласно которой, космонавт, летающий в космическом корабле несколько лет, может возвратиться на Землю и оказаться в своем Будущем, поскольку в Космосе и на Земле «время» течет по-разному, оно может замедлять или ускорять ход.

Правда, Эйнштейн предупреждал, что по стреле «времени» двигаться нельзя, иначе кто-нибудь, не слишком озабоченный соблюдением морали или Уголовного кодекса, мог бы сесть на «машину времени», добраться до своего дедушки в неженатом возрасте, убить его, в результате чего не появился бы на Свет сам, что привело бы к парадоксу или, по крайней мере, к нешуточному скандалу.

Есть в «теории относительности» и другие интересные парадоксы того же плана. Так, ОТО (общая теория относительности) противоречит не только первому, но и второму закону Ньютона, а также закону сохранения энергии. По Эйнштейну все тела движутся в искривленном пространстве, следовательно, не прямолинейно, а с ускорением под действием силы. Спрашивается, откуда они черпают энергию для такого движения в искривленном пространстве?

Любопытны противоречия и внутри самой «теории относительности». Все та же «общая теория относительности» (ОТО) наделяет пространство и время физическими свойствами (например, пространство-время искривляется). Но говорить о пространстве есть смысл только тогда, когда мы имеем расположенные в нем тела, а говорить о времени имеет смысл только тогда, когда происходят какие-то изменения. ОТО фактически принимает концепцию абсолютного искривленного пространства-времени, что противоречит другой части учения Эйнштейна - «Специальной теории относительности» (СТО), которая утверждает, что абсолютного пространства нет. Что же правильно?

В то же время, стоит только предположить, что строение мира, как утверждают некоторые ученые, является более сложным, чем мы привыкли это считать, и во Вселенной существуют параллельные миры, как все встает на свои места. Искривленные пространства могут пересекаться и накладываться друг на друга. В местах их пересечения невидимые, неземные существа и неопознанные летающие объекты становятся видимыми, а закон сохранения энергии работает правильно в инерциальных координатах всей Вселенной, а не только Земли.

Задумывался ли над этими вещами автор теории относительности? Скорее всего, нет. По крайней мере, если и задумывался о «чем-то», вслух об этом не говорил. Отойдя от публичной научной деятельности, Эйнштейн продолжал жить тихо, незаметно для окружающих. Закат его эры ознаменовался целой чередой потерь: все близкие физика умерли, а дети давно жили самостоятельной жизнью отдельно от него.

Со смертью близких оборвалась тонкая нить, связывающая ученого со Старым Светом. Несмотря на душевную боль, он продолжал работать, но теперь уже «в стол...» Его опекала секретарша Элен Дюкас, которая испытывала целую гамму чувств от общения с гением. Страдавший бессонницей Эйнштейн, по ночам изливал душу скрипке, отказываясь утром даже умываться. Всклокоченные волосы и ужасная одежда старика возмущали окружающих, его неряшливость списывали на возрастные чудачества.

Таким же чудачеством посчитали в Америке, призыв ученого запретить ядерное оружие. Между тем, весть об атомных взрывах в Японии повергла его в настоящий шок. Это казалось тем более странным, что он сам был одним из создателей ядерного оружия. К старости Эйнштейн стал сентиментален. Гений начал смотреть на мир другими глазами, глазами «простого смертного»...

Одинокого ученого не раз видели за разговором с его любимой кошкой, которая терпеливо внимала хозяину. Иногда он помогал соседской девочке-школьнице, решая вместе с ней на скамейке в скверике Принстона математические задачи. Начиная с 1948 года Эйнштейн знал, что может умереть в любой момент. После операции у него появилась аневризма аорты - пузырь, могущий лопнуть. В этот период возникла страна Израиль, куда физика официально пригласили Президентом, он отказался. Стенка кровеносного сосуда продержалась несколько лет и сдала ночью 18 апреля 1955 года...

Смерть ученого, как и его жизнь, оказалась окутанной тайной. Есть гипотеза, что в последние годы он работал над созданием теории единого поля, которая должна была совершить прорыв в понимании пространства и времени. Однако, посчитав, что человечество не готово к этому, Эйнштейн сжег свои рукописи и дневники. Тайна его ушла вместе с ним...

10 января 1934 года Германское патентное ведомство по заявке, поданной 25 апреля 1929 года, выдало патент № 590783 на «Устройство, в частности, для звуковоспроизводящей системы, в котором изменения электрического тока вследствие магнитострикции вызывают движение магнитного тела». Авторы изобретения — Рудольф Гольдшмидт и Альберт Эйнштейн. Магнитострикцией называют изменение размеров магнитных тел (обычно ферромагнетиков) при намагничивании. В преамбуле к патентному описанию изобретатели пишут, что силам магнитного сжатия препятствует жесткость ферромагнетика, и предлагают три способа увеличения перемещения под действием этой силы.

Первый способ показан на рис. 1 a . Несущий иглу С с диффузором ферромагнитный стержень В ввинчен в прочное U-образное магнитное ярмо А таким образом, что сжимающие стержень осевые усилия очень близки к критической величине, при которой имеют место эйлеровская потеря устойчивости и изгиб стержня. На ярмо надеты обмотки D, по которым проходит электрический ток, модулированный звуковым сигналом. Чем сильнее звук, тем сильнее намагничивание и сжатие стержня В. Поскольку стержень поставлен на грань неустойчивости, малые вариации длины приводят к сильным колебаниям в вертикальном направлении, и прикрепленный к середине стержня диффузор генерирует звук. Во втором варианте (рис. 1 б ) используется неустойчивость системы из сжатой пружины Н и штока G, упирающегося острием в лунку S. Модулированный звуковым сигналом ток проходит по обмотке D. Переменная во времени намагниченность железного стержня приводит к небольшим колебаниям его длины, которые усиливаются за счет энергии теряющей устойчивость сильной пружины. В третьем варианте магнитострикционного громкоговорителя (рис. 1 в ) применена схема с двумя железными стержнями B1 и B2, обмотки D которых подключены таким образом, что, когда намагниченность одного стержня увеличивается, намагниченность другого уменьшается. Тягами C1 и С2 стержни соединены с коромыслом G, подвешенным на штанге М и прикрепленным растяжками F к боковинам магнитного ярма А. Коромысло жестко связано с диффузором W. Завинчивая гайку Р на штанге М, систему переводят в состояние неустойчивого равновесия. Благодаря противофазному намагничиванию стержней B1 и B2 током звуковой частоты их деформации также совершаются в противофазе — один сжимается, другой удлиняется, и коромысло в соответствии со звуковым сигналом поворачивается относительно точки R. В этом случае также за счет использования скрытой неустойчивости происходит усиление амплитуды магнитострикционных колебаний.

Автоматическая фотокамера

Эйнштейн придумал несколько технических устройств, в том числе чувствительный электрометр и прибор, определяющий время экспозиции при фотосъемке. Теперь такое устройство называется фотоэкспонометром. Может быть, это изобретение было побочным продуктом размышлений, завершившихся созданием представления о световых квантах и объяснением фотоэффекта. Интерес к устройствам подобного рода сохранился у Эйнштейна надолго, хотя фотолюбителем он не был. Во второй половине 40-х годов Эйнштейн и Букки изобрели механизм для автоматической регулировки времени экспозиции в зависимости от освещенности. Устройство показано на рис. 2 , где а, в — камера, б — сегмент переменной прозрачности. 27 октября 1936 года они получили американский патент № 2058562 на фотокамеру, автоматически подстраивающуюся под уровень освещенности. В ее передней стенке 1, помимо объектива 2, имеется еще окно 3, через которое свет попадает на фотоэлемент 4. Электрический ток, вырабатываемый фотоэлементом, поворачивает находящийся между линзами объектива легкий кольцевой сегмент 5, зачерненный так, что прозрачность его плавно изменяется от максимальной на одном конце до минимальной на другом (рис. 2 б ). Поворот сегмента тем больше, а, следовательно, затемнение объектива тем сильнее, чем ярче освещен объект. Таким образом, будучи раз отъюстированным, устройство при любой освещенности само регулирует количество света, падающего на фотопленку или пластинку, находящуюся в фокальной плоскости объектива 2. Но что делать, если фотографу захочется изменить диафрагму? Для этого изобретатели предлагают несколько усложненный вариант своей фотокамеры. В этом варианте на ее передней стенке 1 устанавливается поворотный диск 6 с набором отверстий 7-12 нескольких диаметров. При поворотах диска одно из таких отверстий приходится на объектив, а диаметрально противоположное — на окно фотоэлемента. Поворачивая диск за рычажок 13 на фиксированные углы, фотограф одновременно диафрагмирует и объектив и окно. Экспонометр Букки—Эйнштейна одно время был весьма популярен, его даже использовали кинооператоры в Голливуде. Заметим, что попутно здесь предложен тот самый принцип обратной связи, который лег в основу кибернетики, но до выхода основополагающей книги Норберта Винера оставалось еще 12 лет.

Гирокомпасы и индукционная электромагнитная подвеска

В 1926 году фирмой Аншютца был разработан и запущен в серийное производство весьма сложный и совершенный гироскопический прибор — прецизионный гирокомпас. В статьях и книгах по гирокомпасам непременно отмечается, что в разработке принял участие Эйнштейн. Этот гироскопический прибор двухроторный — в нем механически связаны взаимно перпендикулярные оси двух вращающихся со скоростью 20 000 об./мин роторов, по 2,3 кг каждый. Они являются также роторами трехфазных асинхронных двигателей переменного тока. Оба гироскопа (ротора) помещены внутрь полой герметичной сферы. При слове «гироскоп» большинство вспоминает устройство с ротором, ось которого закреплена в кольцах карданова подвеса. Конечно, карданов подвес, обеспечивающий ротору полную свободу поворотов вокруг трех взаимно перпендикулярных осей, — находка необычайно остроумная (рис. 3 ). Но для мореходного гирокомпаса такой подвес не годится: компас должен месяцами указывать строго на север, не сбиваться ни при штормах, ни при ускорениях и переменах курса судна. С течением времени ось ротора будет поворачиваться, или, как говорят моряки, «уходить». В новом гироскопе кардановых колец нет — сфepa диаметром 25 см с двумя гироскопами (двухгироскопная система в отношении качки несравненно устойчивее одногироскопной) свободно плавает в жидкости, снаружи она не касается никаких подпорок или стенок. К ней даже не подходят электрические провода, которые способны передавать какие-то механические усилия и моменты. У сферы имеются выполненные из электропроводного материала «полярные шапки» и «экваториальный пояс». Против этих электродов в жидкости находятся электроды, к которым подключены фазы электропитания. Жидкость, в которой плавает сфера, — это вода, в которую добавлено немного глицерина для придания ей антифризных свойств и кислоты — для электропроводности. Таким образом, трехфазный ток подается в гиросферу прямо через поддерживающую ее жидкость, а затем уже внутри по проводам разводится к статорным обмоткам гироскопных двигателей.

Для плавания в поддерживающей жидкости в полностью погруженном и безразличном состоянии должен соблюдаться совершенно точный баланс между ее весом и весом вытесненного раствора. Соблюсти такой баланс очень нелегко, но, даже если он и достигнут, неизбежные в этом случае температурные колебания и изменения удельных весов его нарушат. Кроме того, необходимо еще как-то центрировать гиросферу в горизонтальном направлении. Эйнштейн придумал, как осуществить центровку гиросферы в вертикальном и горизонтальном направлениях. Вблизи дна внутрь гиросферы помещается кольцевая обмотка, подключаемая к одной из фаз поданного в шар переменного тока, сама же гиросфера окружается еще одной полой металлической сферой (рис. 4 ). Создаваемое внутренней обмоткой гиросферы переменное магнитное поле наводит в окружающей ее, например алюминиевой, сфере вихревые токи. Согласно закону Ленца, эти токи стремятся воспрепятствовать изменению магнитного потока, которое произошло бы при любом смещении внутренней сферы относительно внешней. При этом происходит автоматическая стабилизация гиросферы. Если она, например, в результате повышения температуры стала тонуть (ведь удельный вес жидкости при нагревании вследствие ее расширения уменьшается), зазор между донными частями сфер сократится, отталкивающие силы возрастут и остановят движение. Аналогично стабилизируется гиросфера и в горизонтальном направлении.

В различных отраслях современной техники все более широкое применение находят сейчас исключающие трение и касание способы подвески, при которых подвешиваемый объект парит, или, как теперь часто говорят, левитирует. Существуют магнитная, электростатическая, сверхпроводящая магнитная и, наконец, индукционная электромагнитная подвеска, которую предложил Эйнштейн. Например, она применяется при бестигельной плавке металлов и полупроводников.

Открытие теории относительности было окружено серьезными, но малоизвестными обвинениями Эйнштейна в плагиате, Дэвида Гильберта и его сторонников. Все началось с того, что Гильберт заявил о том, что первым пришел к общей теории относительности и что его работу скопировал Эйнштейн без должных ссылок. Эйнштейн опроверг обвинения, заявив, что именно Гильберт скопировал несколько более ранних работ Эйнштейна.

Сначала большинство людей решило, что оба ученых независимо друг от друга работали над общей теорией относительности и что Гильберт подал статью с правильными уравнениями за пять дней до Эйнштейна. Тем не менее после того, как историки решили разобраться в вопросе, они обнаружили, что именно Гильберт позаимствовал несколько идей у Эйнштейна, не упомянув его имени.

Судя по всему, доказательствам, изначально представленным Гильбертом, не хватало важного шага, без которого они были неправильными. К тому времени, когда работу Гильберта опубликовали, он уже исправил ошибку. И противопоставил свою работу эйнштейновской, которая была опубликована намного раньше.

Он отлично учился в средней школе


Эйнштейн был отличным учеником средней школы. Более того, он был настолько хорош в математике, что изучал математический анализ в возрасте 12 лет, на три года раньше обычного. В возрасте 15 лет Эйнштейн написал продвинутое эссе, которое стало основой для его дальнейшей работы в теории относительности.

Миф о том, что Эйнштейн ужасно учился в школе, родился из-за различия в системах маркировки между немецкими и швейцарскими школами. Когда Эйнштейн сменил немецкую школу на школу в кантоне Ааргау в Швейцарии, система классификации - от 1 до 6 (как от 5 до 1 у нас) - была перевернутой. Оценка 6, обозначавшая низший балл, стала высшей, а единица, обозначавшая высшую оценку, стала низшим баллом.

Впрочем, Эйнштейн завалил вступительный экзамен в колледж. Прежде чем попасть в Ааргау, откуда и пошел миф о плохой учебе, он пытался поступить в Федеральную политехническую школу в Швейцарии. И хотя экзамены по математике и физике он сдал замечательно, по некоторым ненаучным предметам, особенно по французскому языку, он набрал мало баллов.

Его изобретения


В течение жизни Эйнштейна ему приписывались некоторые изобретения, включая холодильник Эйнштейн, который он изобрел вместе со своим другом и коллегой физиком Лео Сцилардом. В отличие от обычных холодильников, холодильник Эйнштейна не использовал электричество. Он охлаждал пищу в процессе абсорбции, использующего изменения давления между газами и жидкостями для снижения температуры в пищевой камере.

Эйнштейн захотел придумать свой холодильник после того, как услышал о гибели немецкой семьи, отравившейся токсичными газами, утекшими из обычного холодильника. В 1800-х годах механические компрессоры в холодильниках могли иметь дефектные пломбы, через которые утекали ядовитые газы, двуокись серы и хлористый метил.

Эйнштейн также изобрел насос и блузку. Блуза имела два набора кнопок, пришитых параллельно друг другу. Один набор кнопок подошел бы худому человеку, а другой подошел бы человеку потяжелее. Худенькая персона, которая купила бы блузку Эйнштейна, могла прибавить в весе и просто перейти на другой набор кнопок. Так же, как и пышный человек, потерявший в весе. Экономия.

Лазейка, которая могла сделать США диктатором


Курт Гедель был среди ученых, бежавших в США с подконтрольных нацистам территорий во время Второй мировой войны. В отличие от Эйнштейна, Гедель с трудом получил американское гражданство. Когда его, наконец, пригласили на собеседование по поводу гражданства, он должен был привести двух человек с собой, которые могли бы поручиться за его поведение. Гедель взял друзей, Оскара Моргенштерна и Эйнштейна.

Гедель много читал, готовясь к собеседованию, которое совершенно случайно проводил судья Филипп Форман, друг Эйнштейна. Когда Форман выразил надежду на то, что США не были и никогда не станут диктаторским государством, Гедель возразил, сказав, что США вполне может обзавестись диктатурой из-за лазейки в Конституции.

Он собирался объяснить, но Эйнштейн перебил Геделя, поскольку его ответ мог лишить его шансов на получение гражданства. Судья Форман быстро продолжил интервью, и Гедель стал гражданином США.

Этот инцидент стал известен лишь благодаря записи Моргенштерна в дневнике. Тем не менее в ней не сказано, какой была лазейка или как США могли стать страной с диктатурой. Никто не знает, какая часть Конституции содержит очевидную лазейку, но ходят предположения, что Гедель думал о Статье 5, которая позволяет вносить изменения в Конституцию. Вполне возможно, что некоторые поправки могли юридически уничтожить ее.


ФБР следило за Эйнштейном с 1933 года, когда он приехал в США, до его смерти в 1955 году. Бюро прослушивало его телефон, перехватывало письмо, обыскивало его мусор в поисках свидетельств, которые могли бы указать на подозрительную группу или активность, включая шпионство на Советский Союз. Однажды ФБР даже объединилось со службой иммиграции в поисках причины для депортации ученого. В Эйнштейне подозревали антиправительственного радикала или коммуниста ввиду его политических взглядов и связей с пацифистскими и правозащитными группами.

До приезда Эйнштейна в США Женская патриотическая корпорация направила 16-страничное письмо в Госдепартамент, протестуя против въезда ученого в страну. Она утверждала, что даже Иосиф Сталин был меньше связан с группами коммунистов, чем Эйнштейн.

В результате Госдепартамент тщательно допросил Эйнштейна на тему его политических убеждений до выдачи визы. Разозлившись, Эйнштейн сердите отвечал своим интервьюерам, что американский народ умолял его приехать в США и он не потерпит отношения к себе как к подозреваемому. Уже получив гражданство, Эйнштейн оставался в США, даже зная, что находится под наблюдением. Однажды он даже сказал польскому послу, что их разговор тайно записывался.

Он пожалел о своей причастности к атомной бомбе


Эйнштейн никогда не принимал участие в , правительственной программе США, в рамках которой были созданы первые ядерные бомбы во время Второй мировой войны. Даже если бы он захотел участвовать, ему бы отказали из соображений безопасности. Ученым, принимавшим участие в проекте, также запрещалось с ним встречаться.

Единственным вкладом Эйнштейна стало подписание письма с просьбой к президенту Рузвельту о разработке атомной бомбы. Вместе с физиком Лео Сцилардом Эйнштейн написал письмо после того, как узнал, что немецкие ученые расщепили атом урана.

Хотя Эйнштейн и знал о чрезвычайно разрушительной силе атомной бомбы, он ввязался в первую очередь потому, что боялся, что немцы первыми сделают бомбу. Но впоследствии он пожалел о том, что написал и подписал письмо. Услышав, что США сбросили первую атомную бомбу на Хиросиму, он ответил: «Горе мне». Позже Эйнштейн признался, что не подписал бы письмо, если бы знал, что немцы никогда не сделают бомбу.


Рожденный в 1910 году, Эдуард был вторым сыном Эйнштейна и его жены Милевы Марич. Эдуард (по прозвищу «Тете» или «Тетель») в детстве часто болел и получил диагноз шизофреника в возрасте 20 лет. Милева, которая развелась с Эйнштейном в 1919 году, сначала заботилась об Эдуарде, но позже поместила его в психиатрическую лечебницу.

Эйнштейн не был удивлен, когда Тете поставили такой диагноз. Сестра Милевы страдала от шизофрении и Тете часто проявлял поведение, которое указывало на болезнь. Эйнштейн бежал из Германии в США через год после того, как Тете попал в больницу. Хотя Эйнштейн часто навещал своих сыновей, когда все они жили в Европе, попав в Америку, он ограничился одними письмами.

Письма Эйнштейна к Эдуарду были редкими, но очень душевными. В одном письме Эйнштейн сравнил людей с морем, отметив, что они могут быть «приветливыми и дружелюбными» или «бурными и сложными». Он добавил, что хотел бы увидеть своего сына грядущей весной. К сожалению, разразилась Вторая мировая война, и Эйнштейн больше никогда не увидел Тете.

После смерти Милевы в 1948 году, Тете оставался в госпитале еще девять лет. Восемь лет он провел с приемной семьей, но вернулся в больницу, когда его приемная мать заболела. Умер Тете в 1965 году.

Эйнштейн был заядлым курильщиком

Больше всего на свете Эйнштейн любил свою скрипку и трубку. Будучи заядлым курильщиком, он однажды сказал, что считает курение необходимым для спокойствия и «объективного суждения» в людях. Когда его врач прописал ему избавление от вредной привычки, Эйнштейн засунул в рот трубку и закурил. Иногда он также поднимал окурки на улицах, чтобы раскурить в своей трубке.

Эйнштейн получил пожизненное членство в Монреальском клубе курильщиков трубок. Однажды он упал за борт во время поездки на лодке, но сумел спасти заветную трубку от воды. Помимо множества рукописей и писем, трубка остается одной из немногих личных вещей Эйнштейна, которые у нас есть.

Он любил женщин


Когда Эйнштейн не работал на E = mc^2, не курил, не писал письма и не проектировал блузку, он развлекал себя женщинами. Его письма показывают, как сильно он любил женщин, или, по словам самого Эйнштейна, как сильно женщины любили его.

В интервью NBC News, Ханох Гутфройнд, председатель Всемирной выставки Альберта Эйнштейна в Еврейском университете, описал брак Эйнштейна с его второй женой Эльзой как «брак по расчету». Гутфройнд также считает, что 3500 страниц писем Эйнштейна, изданных в 2006 году, свидетельствуют о том, что Эйнштейн был не таким уж плохим отцом и мужем, как считалось изначально.

Признав, что не может оставаться с одной женщиной, Эйнштейн был откровенен с Эльзой о своих внебрачных связях. Он часто писал ей в письмах о том, что вокруг него собирается множество женщин, что он сам охарактеризовал как нежелательное внимание. Будучи в браке, он сменил по меньшей мере шесть подружек, включая Эстеллу, Этель, Тони и Маргариту.

В письме своей падчерице Марго от 1931 года, Эйнштейн писал: «Это правда, что М. последовала за мной в Англию, и ее преследование выходит из-под контроля. Из всех дам я на самом деле привязан только к г-же Л., абсолютно безвредной и порядочной».

Крупнейшая ошибка Эйнштейна


Эйнштейн мог быть блестящим ученым, но он был далеко не идеальным. На самом деле он сделал по меньшей мере семь ошибок в различных доказательствах E = mc^2. Тем не менее в 1917 году он признал свой «самый большой промах». Он добавил космологическую постоянную - представленную греческой буквой лямбда - в уравнения общей теории относительности. Лямбда представляла силу, противодействующую притяжению гравитации. Эйнштейн добавил лямбду, поскольку большинство ученых считало, что Вселенная была стабильна в то время.

Позже Эйнштейн убрал постоянную, когда обнаружил, что его предыдущие уравнения были корректны и Вселенная на самом деле расширяется. Но в 2010 году ученые выяснили, что уравнения с лямбдой вполне могут оказаться верными. Лямбда может объяснять «темную энергию», теоретическую силу, которая противостоит гравитации и .



Поделиться: