Объем тела вращения заданного параметрически. Вычисление объемов тел вращения с помощью определенного интеграла. Как найти площадь в этом случае

Лекции 8. Приложения определенного интеграла.

Приложение интеграла к физическим задачам основано на свойстве аддитивности интеграла по множеству. Поэтому с помощью интеграла могут вычисляться такие величины, которые сами аддитивны по множеству. Например, площадь фигуры равна сумме площадей ее частей Длина дуги, площадь поверхности, объем тела, масса тела обладают тем же свойством. Поэтому все эти величины можно вычислять с помощью определенного интеграла.

Можно использовать два метода решения задач: метод интегральных сумм и метод дифференциалов.

Метод интегральных сумм повторяет конструкцию определенного интеграла: строится разбиение, отмечаются точки, в них вычисляется функция, вычисляется интегральная сумма, производится предельный переход. В этом методе основная трудность – доказать, что в пределе получится именно то, что нужно в задаче.

Метод дифференциалов использует неопределенный интеграл и формулу Ньютона – Лейбница. Вычисляют дифференциал величины, которую надо определить, а затем, интегрируя этот дифференциал, по формуле Ньютона – Лейбница получают требуемую величину. В этом методе основная трудность – доказать, что вычислен именно дифференциал нужной величины, а не что-либо иное.

Вычисление площадей плоских фигур.

1. Фигура ограничена графиком функции, заданной в декартовой системе координат.

Мы пришли к понятию определенного интеграла от задачи о площади криволинейной трапеции (фактически, используя метод интегральных сумм). Если функция принимает только неотрицательные значения, то площадь под графиком функции на отрезке может быть вычислена с помощью определенного интеграла . Заметим, что поэтому здесь можно увидеть и метод дифференциалов.

Но функция может на некотором отрезке принимать и отрицательные значения, тогда интеграл по этому отрезку будет давать отрицательную площадь, что противоречит определению площади.

Можно вычислять площадь по формуле S =. Это равносильно изменению знака функции в тех областях, в которых она принимает отрицательные значения.

Если надо вычислить площадь фигуры, ограниченной сверху графиком функции , а снизу графиком функции , то можно пользоваться формулой S = , так как .

Пример. Вычислить площадь фигуры, ограниченной прямыми x=0, x=2 и графиками функций y=x 2 , y=x 3 .

Заметим, что на интервале (0,1) выполнено неравенство x 2 > x 3 , а при x >1 выполнено неравенство x 3 > x 2 . Поэтому

2. Фигура ограничена графиком функции, заданной в полярной системе координат.

Пусть график функции задан в полярной системе координат и мы хотим вычислить площадь криволинейного сектора, ограниченного двумя лучами и графиком функции в полярной системе координат.

Здесь можно использовать метод интегральных сумм, вычисляя площадь криволинейного сектора как предел суммы площадей элементарных секторов, в которых график функции заменен дугой окружности .

Можно использовать и метод дифференциалов: .

Рассуждать можно так. Заменяя элементарный криволинейный сектор, соответствующий центральному углу круговым сектором, имеем пропорцию . Отсюда . Интегрируя и используя формулу Ньютона – Лейбница, получаем .

Пример. Вычислим площадь круга (проверим формулу). Полагаем . Площадь круга равна .

Пример. Вычислим площадь, ограниченную кардиоидой .

3 Фигура ограничена графиком функции, заданной параметрически.

Функция может быть задана параметрически в виде . Используем формулу S = , подставляя в нее и пределы интегрирования по новой переменной . . Обычно при вычислении интеграла выделяют те области, где подинтегральная функция имеет определенный знак и учитывают соответствующую площадь с тем или иным знаком.

Пример. Вычислить площадь, ограниченную эллипсом .

Используем симметрию эллипса, вычислим площадь четверти эллипса, находящуюся в первом квадранте. В этом квадранте . Поэтому .

Вычисление объемов тел.

1. Вычисление объемов тел по площадям параллельных сечений.

Пусть требуется вычислить объем некоторого тела V по известным площадям сечений этого тела плоскостями, перпендикулярными прямой OX, проведенными через любую точку x отрезка прямой OX.

Применим метод дифференциалов. Считая элементарный объем , над отрезком объемом прямого кругового цилиндра с площадью основания и высотой , получим . Интегрируя и применяя формулу Ньютона – Лейбница, получим

2. Вычисление объемов тел вращения.

Пусть требуется вычислить OX .

Тогда .

Аналогично, объем тела вращения вокруг оси OY , если функция задана в виде , можно вычислить по формуле .

Если функция задана в виде и требуется определить объем тела вращения вокруг оси OY , то формулу для вычисления объема можно получить следующим образом.

Переходя к дифференциалу и пренебрегая квадратичными членами, имеем . Интегрируя и применяя формулу Ньютона – Лейбница, имеем .

Пример. Вычислить объем шара .

Пример. Вычислить объем прямого кругового конуса, ограниченного поверхностью и плоскостью .

Вычислим объем, как объем тела вращения, образованного вращением вокруг оси OZ прямоугольного треугольника в плоскости OXZ, катеты которого лежат на оси OZ и прямой z = H , а гипотенуза лежит на прямой .

Выражая x через z, получим .

Вычисление длины дуги.

Для того, чтобы получить формулы для вычисления длины дуги, вспомним выведенные в 1 семестре формулы для дифференциала длины дуги.

Если дуга представляет собой график непрерывно дифференцируемой функции , дифференциал длины дуги можно вычислить по формуле

. Поэтому

Если гладкая дуга задана параметрически , то

. Поэтому .

Если дуга задана в полярной системе координат , то

. Поэтому .

Пример. Вычислить длину дуги графика функции, . .

Прежде чем перейти к формулам площади поверхности вращения, дадим краткую формулировку самой поверхности вращения. Поверхность вращения, или, что то же самое - поверхность тела вращения - пространственная фигура, образованная вращением отрезка AB кривой вокруг оси Ox (рисунок ниже).

Представим себе криволинейную трапецию, ограниченную сверху упомянутым отрезком кривой. Тело, образованное вращением этой трапеции вокруг то же оси Ox , и есть тело вращения. А площадь поверхности вращения или поверхности тела вращения - это его внешняя оболочка, не считая кругов, образованных вращением вокруг оси прямых x = a и x = b .

Заметим, что тело вращения и соответственно его поверхность могут быть образованы также вращением фигуры не вокруг оси Ox , а вокруг оси Oy .

Вычисление площади поверхности вращения, заданной в прямоугольных координатах

Пусть в прямоугольных координатах на плоскости уравнением y = f (x ) задана кривая, вращением которой вокруг координатной оси образовано тело вращения.

Формула для вычисления площади поверхности вращения следующая:

(1).

Пример 1. Найти площадь поверхности параболоида, образованную вращением вокруг оси Ox дуги параболы , соответствующей изменению x от x = 0 до x = a .

Решение. Выразим явно функцию, которая задаёт дугу параболы:

Найдём производную этой функции:

Прежде чем воспользоваться формулу для нахождения площади поверхности вращения, напишем ту часть её подынтегрального выражения, которая представляет собой корень и подставим туда найденную только что производную:

Ответ: длина дуги кривой равна

.

Пример 2. Найти площадь поверхности, образуемой вращением вокруг оси Ox астроиды .

Решение. Достаточно вычислить площадь поверхности, получающейся от вращения одной ветви астроиды, расположенной в первой четверти, и умножить её на 2. Из уравнения астроиды выразим явно функцию, которую нам нужно будет подставить в формулу для нахождения площади повержности вращения:

.

Производим интегрирование от 0 до a :

Вычисление площади поверхности вращения, заданной параметрически

Рассмотрим случай, когда кривая, образующая поверхность вращения, задана параметрическими уравнениями

Тогда площадь поверхности вращения вычисляется по формуле

(2).

Пример 3. Найти площадь поверхности вращения, образованной вращением вокруг оси Oy фигуры, ограниченной циклоидой и прямой y = a . Циклоида задана параметрическими уравнениями

Решение. Найдём точки пересечения циклоиды и прямой. Приравнивая уравнение циклоиды и уравнение прямой y = a , найдём

Из этого следует, что границы интегрирования соответствуют

Теперь можем применить формулу (2). Найдём производные:

Запишем подкоренное выражение в формуле, подставляя найденные производные:

Найдём корень из этого выражения:

.

Подставим найденное в формулу (2):

.

Произведём подстановку:

И, наконец, находим

В преобразовании выражений были использованы тригонометрические формулы

Ответ: площадь поверхности вращения равна .

Вычисление площади поверхности вращения, заданной в полярных координатах

Пусть кривая, вращением которой образована поверхность, задана в полярных координатах.

Как и для задачи нахождения площади, нужны уверенные навыки построения чертежей – это чуть ли не самое важное (поскольку интегралы сами по себе чаще будут лёгкими). Освоить грамотную и быструю технику построения графиков можно с помощью методических материалов и Геометрические преобразования графиков . Но, собственно, о важности чертежей я уже неоднократно говорил на уроке .

Вообще в интегральном исчислении очень много интересных приложений, с помощью определенного интеграла можно вычислить площадь фигуры, объем тела вращения, длину дуги , площадь поверхности вращения и многое другое. Поэтому будет весело, пожалуйста, настройтесь на оптимистичный лад!

Представьте некоторую плоскую фигуру на координатной плоскости. Представили? ... Интересно, кто что представил… =))) Её площадь мы уже находили. Но, кроме того, данную фигуру можно ещё и вращать, причем вращать двумя способами:

– вокруг оси абсцисс ;
– вокруг оси ординат .

В данной статье будут разобраны оба случая. Особенно интересен второй способ вращения, он вызывает наибольшие затруднения, но на самом деле решение практически такое же, как и в более распространенном вращении вокруг оси абсцисс. В качестве бонуса я вернусь к задаче нахождения площади фигуры , и расскажу вам, как находить площадь вторым способом – по оси . Даже не столько бонус, сколько материал удачно вписывается в тему.

Начнем с наиболее популярной разновидности вращения.


плоской фигуры вокруг оси

Пример 1

Вычислить объем тела, полученного вращением фигуры, ограниченной линиями , вокруг оси .

Решение : Как и в задаче на нахождение площади, решение начинается с чертежа плоской фигуры . То есть, на плоскости необходимо построить фигуру, ограниченную линиями , , при этом не забываем, что уравнение задаёт ось . Как рациональнее и быстрее выполнить чертёж, можно узнать на страницах Графики и свойства Элементарных функций и Определенный интеграл. Как вычислить площадь фигуры . Это китайское напоминание, и на данном моменте я больше не останавливаюсь.

Чертёж здесь довольно прост:

Искомая плоская фигура заштрихована синим цветом, именно она и вращается вокруг оси В результате вращения получается такая немного яйцевидная летающая тарелка, которая симметрична относительно оси . На самом деле у тела есть математическое название, но по справочнику что-то лень уточнять, поэтому едем дальше.

Как вычислить объем тела вращения?

Объем тела вращения можно вычислить по формуле :

В формуле перед интегралом обязательно присутствует число . Так повелось – всё, что в жизни крутится, связано с этой константой.

Как расставить пределы интегрирования «а» и «бэ», думаю, легко догадаться из выполненного чертежа.

Функция … что это за функция? Давайте посмотрим на чертеж. Плоская фигура ограничена графиком параболы сверху. Это и есть та функция, которая подразумевается в формуле.

В практических заданиях плоская фигура иногда может располагаться и ниже оси . Это ничего не меняет – подынтегральная функция в формуле возводится в квадрат: , таким образом интеграл всегда неотрицателен , что весьма логично.

Вычислим объем тела вращения, используя данную формулу:

Как я уже отмечал, интеграл почти всегда получается простой, главное, быть внимательным.

Ответ :

В ответе нужно обязательно указать размерность – кубические единицы . То есть, в нашем теле вращения примерно 3,35 «кубиков». Почему именно кубические единицы ? Потому что наиболее универсальная формулировка. Могут быть кубические сантиметры, могут быть кубические метры, могут быть кубические километры и т.д., это уж, сколько зеленых человечков ваше воображение поместит в летающую тарелку.

Пример 2

Найти объем тела, образованного вращением вокруг оси фигуры, ограниченной линиями , ,

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотрим две более сложные задачи, которые тоже часто встречаются на практике.

Пример 3

Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями , , и

Решение : Изобразим на чертеже плоскую фигуру, ограниченную линиями , , , , не забывая при этом, что уравнение задает ось :

Искомая фигура заштрихована синим цветом. При её вращении вокруг оси получается такой сюрреалистический бублик с четырьмя углами.

Объем тела вращения вычислим как разность объемов тел .

Сначала рассмотрим фигуру, которая обведена красным цветом. При её вращении вокруг оси получается усеченный конус. Обозначим объем этого усеченного конуса через .

Рассмотрим фигуру, которая обведена зеленым цветом. Если вращать данную фигуру вокруг оси , то получится тоже усеченный конус, только чуть поменьше. Обозначим его объем через .

И, очевидно, разность объемов – в точности объем нашего «бублика».

Используем стандартную формулу для нахождения объема тела вращения:

1) Фигура, обведенная красным цветом ограничена сверху прямой , поэтому:

2) Фигура, обведенная зеленым цветом ограничена сверху прямой , поэтому:

3) Объем искомого тела вращения:

Ответ :

Любопытно, что в данном случае решение можно проверить, используя школьную формулу для вычисления объема усеченного конуса.

Само решение чаще оформляют короче, примерно в таком духе:

Теперь немного отдохнем, и расскажу о геометрических иллюзиях.

У людей часто возникают иллюзии, связанная с объемами, которую подметил еще Перельман (другой) в книге Занимательная геометрия . Посмотрите на плоскую фигуру в прорешанной задаче – она вроде бы невелика по площади, а объем тела вращения составляет чуть более 50 кубических единиц, что кажется слишком большим. Кстати, среднестатистический человек за всю свою жизнь выпивает жидкость объемом с комнату площадью 18 квадратных метров, что, наоборот, кажется слишком маленьким объемом.

Вообще, система образования в СССР действительно была самой лучшей. Та же книга Перельмана, изданная ещё в 1950 году, очень хорошо развивает, как сказал юморист, соображаловку и учит искать оригинальные нестандартные решения проблем. Недавно с большим интересом перечитал некоторые главы, рекомендую, доступно даже для гуманитариев. Нет, не нужно улыбаться, что я предложил беспонтовое времяпровождение, эрудиция и широкий кругозор в общении – отличная штука.

После лирического отступления как раз уместно решить творческое задание:

Пример 4

Вычислить объем тела, образованного вращением относительно оси плоской фигуры, ограниченной линиями , , где .

Это пример для самостоятельного решения. Обратите внимание, что все дела происходят в полосе , иными словами, фактически даны готовые пределы интегрирования. Правильно начертите графики тригонометрических функций, напомню материал урока о геометрических преобразованиях графиков : если аргумент делится на два: , то графики растягиваются по оси в два раза. Желательно найти хотя бы 3-4 точки по тригонометрическим таблицам , чтобы точнее выполнить чертеж. Полное решение и ответ в конце урока. Кстати, задание можно решить рационально и не очень рационально.

Вычисление объема тела, образованного вращением
плоской фигуры вокруг оси

Второй параграф будет еще интереснее, чем первый. Задание на вычисление объема тела вращения вокруг оси ординат – тоже достаточно частый гость в контрольных работах. Попутно будет рассмотрена задача о нахождении площади фигуры вторым способом – интегрированием по оси , это позволит вам не только улучшить свои навыки, но и научит находить наиболее выгодный путь решения. В этом есть и практический жизненный смысл! Как с улыбкой вспоминала мой преподаватель по методике преподавания математики, многие выпускники благодарили её словами: «Нам очень помог Ваш предмет, теперь мы эффективные менеджеры и оптимально руководим персоналом». Пользуясь случаем, я тоже выражаю ей свою большую благодарность, тем более, что использую полученные знания по прямому назначению =).

Рекомендую для прочтения всем, даже полным чайникам. Более того, усвоенный материал второго параграфа окажет неоценимую помощь при вычислении двойных интегралов .

Пример 5

Дана плоская фигура, ограниченная линиями , , .

1) Найти площадь плоской фигуры, ограниченной данными линиями.
2) Найти объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси .

Внимание! Даже если вы хотите ознакомиться только со вторым пунктом, сначала обязательно прочитайте первый!

Решение : Задача состоит из двух частей. Начнем с площади.

1) Выполним чертёж:

Легко заметить, что функция задает верхнюю ветку параболы, а функция – нижнюю ветку параболы. Перед нами тривиальная парабола, которая «лежит на боку».

Нужная фигура, площадь которой предстоит найти, заштрихована синим цветом.

Как найти площадь фигуры? Её можно найти «обычным» способом, который рассматривался на уроке Определенный интеграл. Как вычислить площадь фигуры . Причем, площадь фигуры находится как сумма площадей:
– на отрезке ;
– на отрезке .

Поэтому:

Чем в данном случае плох обычный путь решения? Во-первых, получилось два интеграла. Во-вторых, под интегралами корни, а корни в интегралах – не подарок, к тому же можно запутаться в подстановке пределов интегрирования. На самом деле, интегралы, конечно, не убийственные, но на практике всё бывает значительно печальнее, просто я подобрал для задачи функции «получше».

Есть более рациональный путь решения: он состоит в переходе к обратным функциям и интегрированию по оси .

Как перейти к обратным функциям? Грубо говоря, нужно выразить «икс» через «игрек». Сначала разберемся с параболой:

Этого достаточно, но убедимся, что такую же функцию можно вывести из нижней ветки:

С прямой всё проще:

Теперь смотрим на ось : пожалуйста, периодически наклоняйте голову вправо на 90 градусов по ходу объяснений (это не прикол!). Нужная нам фигура лежит на отрезке , который обозначен красным пунктиром. При этом на отрезке прямая расположена выше параболы , а значит, площадь фигуры следует найти по уже знакомой вам формуле: . Что поменялось в формуле? Только буква, и не более того.

! Примечание : Пределы интегрирования по оси следует расставлять строго снизу вверх !

Находим площадь:

На отрезке , поэтому:

Обратите внимание, как я осуществил интегрирование, это самый рациональный способ, и в следующем пункте задания будет понятно – почему.

Для читателей, сомневающихся в корректности интегрирования, найду производные:

Получена исходная подынтегральная функция, значит интегрирование выполнено правильно.

Ответ :

2) Вычислим объем тела, образованного вращением данной фигуры, вокруг оси .

Перерисую чертеж немного в другом оформлении:

Итак, фигура, заштрихованная синим цветом, вращается вокруг оси . В результате получается «зависшая бабочка», которая вертится вокруг своей оси.

Для нахождения объема тела вращения будем интегрировать по оси . Сначала нужно перейти к обратным функциям. Это уже сделано и подробно расписано в предыдущем пункте.

Теперь снова наклоняем голову вправо и изучаем нашу фигуру. Очевидно, что объем тела вращения, следует найти как разность объемов.

Вращаем фигуру, обведенную красным цветом, вокруг оси , в результате получается усеченный конус. Обозначим этот объем через .

Вращаем фигуру, обведенную зеленым цветом, вокруг оси и обозначаем через объем полученного тела вращения.

Объем нашей бабочки равен разности объемов .

Используем формулу для нахождения объема тела вращения:

В чем отличие от формулы предыдущего параграфа? Только в букве.

А вот и преимущество интегрирования, о котором я недавно говорил, гораздо легче найти , чем предварительно возводить подынтегральную функцию в 4-ю степень.

Ответ :

Однако нехилая бабочка.

Заметьте, что если эту же плоскую фигуру вращать вокруг оси , то получится совершенно другое тело вращения, другого, естественно, объема.

Пример 6

Дана плоская фигура, ограниченная линиями , и осью .

1) Перейти к обратным функциям и найти площадь плоской фигуры, ограниченной данными линиями, интегрированием по переменной .
2) Вычислить объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси .

Это пример для самостоятельного решения. Желающие также могут найти площадь фигуры «обычным» способом, выполнив тем самым проверку пункта 1). А вот если, повторюсь, будете вращать плоскую фигуру вокруг оси , то получится совершенно другое тело вращения с другим объемом, кстати, правильный ответ (тоже для любителей порешать).

Полное же решение двух предложенных пунктов задания в конце урока.

Да, и не забывайте наклонять голову направо, чтобы разобраться в телах вращения и в пределах интегрирования!

Когда мы выясняли геометрический смысл определенного интеграла, у нас получилась формула, с помощью которой можно найти площадь криволинейной трапеции, ограниченной осью абсцисс, прямыми x = a , x = b , а также непрерывной (неотрицательной или неположительной) функцией y = f (x) . Иногда удобнее задавать функцию, ограничивающую фигуру, в параметрическом виде, т.е. выражать функциональную зависимость через параметр t . В рамках данного материала мы покажем, как можно найти площадь фигуры, если она ограничена параметрически заданной кривой.

После объяснения теории и выведения формулы мы разберем несколько характерных примеров на нахождение площади таких фигур.

Основная формула для вычисления

Допустим, что у нас имеется криволинейная трапеция, границами которой являются прямые x = a , x = b , ось O x и параметрически заданная кривая x = φ (t) y = ψ (t) , а функции x = φ (t) и y = ψ (t) являются непрерывными на интервале α ; β , α < β , x = φ (t) будет непрерывно возрастать на нем и φ (α) = a , φ (β) = b .

Определение 1

Чтобы вычислить площадь трапеции при таких условиях, нужно использовать формулу S (G) = ∫ α β ψ (t) · φ " (t) d t .

Мы вывели ее из формулы площади криволинейной трапеции S (G) = ∫ a b f (x) d x методом подстановки x = φ (t) y = ψ (t) :

S (G) = ∫ a b f (x) d x = ∫ α β ψ (t) d (φ (t)) = ∫ α β ψ (t) · φ " (t) d t

Определение 2

Учитывая монотонное убывание функции x = φ (t) на интервале β ; α , β < α , нужная формула принимает вид S (G) = - ∫ β α ψ (t) · φ " (t) d t .

Если функция x = φ (t) не относится к основным элементарным, то нам понадобится вспомнить основные правила возрастания и убывания функции на интервале, чтобы определить, будет ли она возрастающей или убывающей.

В этом пункте мы разберем несколько задач на применение формулы, выведенной выше.

Пример 1

Условие : найдите площадь фигуры, которую образует линия, заданная уравнениями вида x = 2 cos t y = 3 sin t .

Решение

У нас есть параметрически заданная линия. Графически ее можно отобразить в виде эллипса с двумя полуосями 2 и 3 . См на иллюстрацию:

Попробуем найти площадь 1 4 полученной фигуры, которая занимает первый квадрант. Область находится в интервале x ∈ a ; b = 0 ; 2 . Далее умножим полученное значение на 4 и найдем площадь целой фигуры.

Вот ход наших вычислений:

x = φ (t) = 2 cos t y = ψ (t) = 3 sin t φ α = a ⇔ 2 cos α = 0 ⇔ α = π 2 + πk , k ∈ Z , φ β = b ⇔ 2 cos β = 2 ⇔ β = 2 πk , k ∈ Z

При k , равном 0 , мы получим интервал β ; α = 0 ; π 2 . Функция x = φ (t) = 2 cos t на нем будет монотонно убывать (подробнее см. статью об основных элементарных функциях и их свойствах). Значит, можно применить формулу вычисления площади и найти определенный интеграл, используя формулу Ньютона-Лейбница:

- ∫ 0 π 2 3 sin t · 2 cos t " d t = 6 ∫ 0 π 2 sin 2 t d t = 3 ∫ 0 π 2 (1 - cos (2 t) d t = = 3 · t - sin (2 t) 2 0 π 2 = 3 · π 2 - sin 2 · π 2 2 - 0 - sin 2 · 0 2 = 3 π 2

Значит, площадь фигуры, заданной исходной кривой, будет равна S (G) = 4 · 3 π 2 = 6 π .

Ответ: S (G) = 6 π

Уточним, что при решении задачи выше можно было взять не только четверть эллипса, но и его половину – верхнюю или нижнюю. Одна половина будет расположена на интервале x ∈ a ; b = - 2 ; 2 . В этом случае у нас бы получилось:

φ (α) = a ⇔ 2 cos α = - 2 ⇔ α = π + π k , k ∈ Z , φ (β) = b ⇔ 2 cos β = 2 ⇔ β = 2 π k , k ∈ Z

Таким образом, при k равном 0 , мы получили β ; α = 0 ; π . Функция x = φ (t) = 2 cos t на этом интервале будет монотонно убывать.

После этого вычисляем площадь половины эллипса:

- ∫ 0 π 3 sin t · 2 cos t " d t = 6 ∫ 0 π sin 2 t d t = 3 ∫ 0 π (1 - cos (2 t) d t = = 3 · t - sin (2 t) 2 0 π = 3 · π - sin 2 · π 2 - 0 - sin 2 · 0 2 = 3 π

Важно отметить, что можно взять только верхнюю или нижнюю часть, а правую или левую нельзя.

Можно составить параметрическое уравнение данного эллипса, центр которого будет расположен в начале координат. Оно будет иметь вид x = a · cos t y = b · sin t . Действуя так же, как и в примере выше, получим формулу для вычисления площади эллипса S э л и п с а = πab .

Задать окружность, центр которой расположен в начале координат, можно с помощью уравнения x = R · cos t y = R · sin t , где t является параметром, а R – радиусом данной окружности. Если мы сразу воспользуемся формулой площади эллипса, то то у нас получится формула, с помощью которой можно вычислить площадь круга с радиусом R: S к р у г а = πR 2 .

Разберем еще одну задачу.

Пример 2

Условие: найдите, чему будет равна площадь фигуры, которая ограничена параметрически заданной кривой x = 3 cos 3 t y = 2 sin 3 t .

Решение

Сразу уточним, что данная кривая имеет вид вытянутой астроиды. Обычно астроида выражается с помощью уравнения вида x = a · cos 3 t y = a · sin 3 t .

Теперь разберем подробно, как построить такую кривую. Выполним построение по отдельным точкам. Это самый распространенный метод, который применим для большинства задач. Более сложные примеры требуют проведения дифференциального исчисления, чтобы выявить параметрически заданную функцию.

У нас x = φ (t) = 3 cos 3 t , y = ψ (t) = 2 sin 3 t .

Данные функции являются определенными для всех действительных значений t . Для sin и cos известно, что они являются периодическими и их период составляет 2 пи. Вычислив значения функций x = φ (t) = 3 cos 3 t , y = ψ (t) = 2 sin 3 t для некоторых t = t 0 ∈ 0 ; 2 π π 8 , π 4 , 3 π 8 , π 2 , . . . , 15 π 8 , получим точки x 0 ; y 0 = (φ (t 0) ; ψ (t 0)) .

Составим таблицу итоговых значений:

t 0 0 π 8 π 4 3 π 8 π 2 5 π 8 3 π 4 7 π 8 π
x 0 = φ (t 0) 3 2 . 36 1 . 06 0 . 16 0 - 0 . 16 - 1 . 06 - 2 . 36 - 3
y 0 = ψ (t 0) 0 0 . 11 0 . 70 1 . 57 2 1 . 57 0 . 70 0 . 11 0
t 0 9 π 8 5 π 4 11 π 8 3 π 2 13 π 8 7 π 4 15 π 8 2 π
x 0 = φ (t 0) - 2 . 36 - 1 . 06 - 0 . 16 0 0 . 16 1 . 06 2 . 36 3
y 0 = ψ (t 0) - 0 . 11 - 0 . 70 - 1 . 57 - 2 - 1 . 57 - 0 . 70 - 0 . 11 0

После этого отметим нужные точки на плоскости и соединим их одной линией.

Теперь нам надо найти площадь той части фигуры, что находится в первой координатной четверти. Для нее x ∈ a ; b = 0 ; 3:

φ (α) = a ⇔ 3 cos 3 t = 0 ⇔ α = π 2 + πk , k ∈ Z , φ (β) = b ⇔ 3 cos 3 t = 3 ⇔ β = 2 πk , k ∈ Z

Если k равен 0 , то у нас получится интервал β ; α = 0 ; π 2 , и функция x = φ (t) = 3 cos 3 t на нем будет монотонно убывать. Теперь берем формулу площади и считаем:

- ∫ 0 π 2 2 sin 3 t · 3 cos 3 t " d t = 18 ∫ 0 π 2 sin 4 t · cos 2 t d t = = 18 ∫ 0 π 2 sin 4 t · (1 - sin 2 t) d t = 18 ∫ 0 π 2 sin 4 t d t - ∫ 0 π 2 sin 6 t d t

У нас получились определенные интегралы, которые можно вычислить с помощью формулы Ньютона-Лейбница. Первообразные для этой формулы можно найти, используя рекуррентную формулу J n (x) = - cos x · sin n - 1 (x) n + n - 1 n J n - 2 (x) , где J n (x) = ∫ sin n x d x .

∫ sin 4 t d t = - cos t · sin 3 t 4 + 3 4 ∫ sin 2 t d t = = - cos t · sin 3 t 4 + 3 4 - cos t · sin t 2 + 1 2 ∫ sin 0 t d t = = - cos t · sin 3 t 4 - 3 cos t · sin t 8 + 3 8 t + C ⇒ ∫ 0 π 2 sin 4 t d t = - cos t · sin 3 t 4 - 3 cos t · sin t 8 + 3 8 t 0 π 2 = 3 π 16 ∫ sin 6 t d t = - cos t · sin 5 t 6 + 5 6 ∫ sin 4 t d t ⇒ ∫ 0 π 2 sin 6 t d t = - cos t · sin 5 t 6 0 π 2 + 5 6 ∫ 0 π 2 sin 4 t d t = 5 6 · 3 π 16 = 15 π 96

Мы вычислили площадь четверти фигуры. Она равна 18 ∫ 0 π 2 sin 4 t d t - ∫ 0 π 2 sin 6 t d t = 18 3 π 16 - 15 π 96 = 9 π 16 .

Если мы умножим это значение на 4 , получим площадь всей фигуры – 9 π 4 .

Точно таким же образом мы можем доказать, что площадь астроиды, заданной уравнениями x = a · cos 3 t y = a · sin 3 t , можно найти по формуле S а с т р о и д ы = 3 πa 2 8 , а площадь фигуры, которая ограничена линией x = a · cos 3 t y = b · sin 3 t , считается по формуле S = 3 πab 8 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На уроках об уравнении прямой на плоскости и уравнениях прямой в пространстве .

Встречайте старую знакомую:

Криволинейную трапецию гордо венчает график , и, как вы знаете, её площадь рассчитывается с помощью определённого интеграла по элементарной формуле или, если короче: .

Рассмотрим ситуацию, когда эта же функция задана в параметрическом виде .

Как найти площадь в этом случае?

При некотором вполне конкретном значении параметра параметрические уравнения будут определять координаты точки , а при другом вполне конкретном значении – координаты точки . Когда «тэ» изменяется от до включительно, параметрические уравнения как раз и «прорисовывают» кривую . Думаю, на счёт пределов интегрирования стало всё понятно. Теперь в интеграл вместо «икса» и «игрека» подставляем функции и раскрываем дифференциал:

Примечание : подразумевается, что функции непрерывны на промежутке интегрирования и, кроме того, функция монотонна на нём.

Формула объёма тела вращения получается так же просто:

Объём тела, получаемого вращением криволинейной трапеции вокруг оси , рассчитывается по формуле или: . Подставляем в неё параметрические функции , а также пределы интегрирования :

Пожалуйста, занесите обе рабочие формулы в свой справочник.

По моим наблюдениям, задачи на нахождение объёма встречаются довольно редко, и поэтому значительная часть примеров данного урока будет посвящена нахождению площади. Не откладываем дело в долгий ящик:

Пример 1

Вычислить площадь криволинейной трапеции , если

Решение : используем формулу .

Классическая задача по теме, которая разбирается всегда и везде:

Пример 2

Вычислить площадь эллипса

Решение : для определённости полагаем, что параметрические уравнения задают канонический эллипс с центром в начале координат, большой полуосью «а» и малой полуосью «бэ». То есть, по условию нам предложено не что иное, как

найти площадь эллипса

Очевидно, что параметрические функции периодичны, и . Казалось бы, можно заряжать формулу, однако не всё так прозрачно. Выясним направление , в котором параметрические уравнения «вычерчивают» эллипс. В качестве ориентира найдём несколько точек, которые соответствуют наиболее простым значениям параметра:

Легко уловить, что при изменении параметра «тэ» от нуля до «двух пи» параметрические уравнения «вычерчивают» эллипс против часовой стрелки :


В силу симметричности фигуры, вычислим часть площади в 1-й координатной четверти, а результат умножим на 4. Здесь мы наблюдаем принципиально такую же картину, которую я комментировал чуть выше: параметрические уравнения «прорисовывают» дугу эллипса «в противоход» оси , но площадь фигуры считается слева направо! Поэтому нижнему пределу интегрирования соответствует значение , а верхнему пределу – значение .

Как я уже советовал на уроке Площадь в полярных координатах , учетверить результат лучше сразу же :

Интеграл (если у кого-то вдруг обнаружился такой невероятный пробел) разобран на уроке Интегралы от тригонометрических функций .

Ответ :

По сути, мы вывели формулу для нахождения площади эллипса . И если на практике вам встретится задача с конкретными значениями «а» и «бэ», то вы легко сможете выполнить сверку/проверку, поскольку задача решена в общем виде.

Площадь эллипса рассчитывается и в прямоугольных координатах, для этого из уравнения необходимо выразить «игрек» и решить задачу точь-в-точь по образцу Примера №4 статьи Эффективные методы решения определённых интегралов . Обязательно посмотрите на этот пример и сравните, насколько проще вычислить площадь эллипса, если он задан параметрически.

И, конечно же, чуть не забыл, параметрические уравнения могут задавать окружность либо эллипс в неканоническом положении.

Пример 3

Вычислить площадь одной арки циклоиды

Чтобы решить задачу, нужно знать, что такое циклоида или хотя бы чисто формально выполнить чертеж. Примерный образец оформления в конце урока. Впрочем, не буду вас отправлять за тридевять земель, на график этой линии можно посмотреть в следующей задаче:

Пример 4

Решение : параметрические уравнения задают циклоиду, и ограничение указывает на тот факт, что речь идёт о её первой арке , которая «прорисовывается», когда значение параметра изменяется в пределах . Заметьте, что здесь «правильное» направление этой «прорисовки» (слева направо), а значит, не возникнет заморочек с пределами интегрирования. Но зато появится куча других прикольных вещей =) Уравнение задаёт прямую , параллельную оси абсцисс и дополнительное условие (см. линейные неравенства ) сообщает нам о том, что нужно вычислить площадь следующей фигуры:

Искомую заштрихованную фигуру я буду ассоциативно называть «крышей дома», прямоугольник – «стеной дома», а всю конструкцию (стена + крыша) – «фасадом дома». Хотя это сооружение больше напоминает какой-то коровник =)

Чтобы найти площадь «крыши» необходимо из площади «фасада» вычесть площадь «стены».

Сначала займёмся «фасадом». Для нахождения его площади нужно выяснить значения , которые задают точки пересечения прямой с первой аркой циклоиды (точки и ). В параметрическое уравнение подставим :

Тригонометрическое уравнение легко решить, банально взглянув на график косинуса : на промежутке равенству удовлетворяют два корня: . В принципе, всё понятно, но, тем не менее, перестрахуемся и подставим их в уравнение :

– это «иксовая» координата точки ;

– а это «иксовая» координата точки .

Таким образом, мы убедились в том, что значение параметра соответствует точке , а значение – точке .

Вычислим площадь «фасада». Для более компактной записи функция часто дифференцируется прямо под интегралом:

Площадь «стены» можно вычислить «школьным» методом, перемножив длины смежных сторон прямоугольника. Длина очевидна, осталось найти . Она рассчитывается как разность «иксовых» координат точек «цэ» и «бэ» (найдены ранее):

Площадь «стены»:

Разумеется, её не стыдно найти и с помощью простейшего определённого интеграла от функции на отрезке :

В результате, площадь «крыши»:

Ответ :

И, конечно же, при наличии чертежа прикидываем по клеточкам, похож ли полученный результат на правду. Похож.

Следующая задача для самостоятельного решения:

Пример 5

Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями

Кратко систематизируем алгоритм решения:

– В большинстве случаев придётся выполнить чертёж и определить фигуру, площадь которой требуется найти.

– На втором шаге следует понять, каким образом рассчитывается искомая площадь: это может быть одиночная криволинейная трапеция, может быть разность площадей, может быть сумма площадей – короче говоря, все те фишки, которые мы рассматривали на уроке .

– На третьем шаге надо проанализировать, целесообразно ли пользоваться симметрией фигуры (если она симметрична), после чего узнать пределы интегрирования (начальное и конечное значение параметра). Обычно для этого необходимо решить простейшее тригонометрическое уравнение – здесь можно использовать аналитический метод, графический метод или бесхитростный подбор нужных корней по тригонометрической таблице .

! Не забываем , что параметрические уравнения могут «прорисовывать» линию и справа налево, в этом случае делаем соответствующую оговорку и поправку в рабочей формуле.

– И на завершающем этапе проводятся технические вычисления. Правдоподобность полученного ответа всегда приятно оценить по чертежу.

А сейчас долгожданная встреча со звёздой:

Пример 6

Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями

Решение : кривая, заданная уравнениями является астроидой , и линейное неравенство однозначно определяет заштрихованную на чертеже фигуру:

Найдём значения параметра, которые определяют точки пересечения прямой и астроиды. Для этого подставим в параметрическое уравнение :


Способы решения подобного уравнения уже перечислены выше, в частности, эти корни легко подбираются по тригонометрической таблице .

Фигура симметрична относительно оси абсцисс, поэтому вычислим верхнюю половинку площади (синяя штриховка), а результат удвоим.

Подставим значение в параметрическое уравнение :
В результате получена «игрековая» координата верхней (нужной нам) точки пересечения астроиды и прямой.

Правой вершине астроиды, очевидно, соответствует значение . Выполним на всякий случай проверку:
, что и требовалось проверить.

Как и в случае с эллипсом, параметрические уравнения «прорисовывают» дугу астроиды справа налево. Для разнообразия оформлю концовку вторым способом: при изменении параметра в пределах функция убывает, следовательно (не забываем удвоить!!):

Интеграл получился довольно громоздкий, и чтобы «не таскать всё за собой» тут лучше прервать решение и преобразовать подынтегральную функцию отдельно. Стандартно понижаем степень с помощью тригонометрических формул :


Годится, в последнем слагаемом подведём функцию под знак дифференциала :

Ответ :

Да, тяжеловато приходится со звёздами =)

Следующее задание для продвинутых студентов:

Пример 7

Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями

Для его решения будет достаточно материалов, которые мы уже рассмотрели, но привычный путь весьма долог, и сейчас я расскажу ещё об одном эффективном методе. Идея на самом деле знакома из урока Вычисление площади с помощью определённого интеграла – это интегрирование по переменной «игрек» и использование формулы . Подставляя в неё параметрические функции , получаем зеркальную рабочую формулу:

Действительно, ну а чем она хуже «стандартной»? В этом состоит ещё одно преимущество параметрической формы – уравнения способны исполнять роль не только «обычной» , но одновременно и обратной функции .

В данном случае предполагается, что функции непрерывны на промежутке интегрирования и функция монотонна на нём. Причём, если убывает на промежутке интегрирования (параметрические уравнения «прорисовывают» график «в противоход» (внимание!! ) оси ), то следует по уже рассмотренной технологии переставить пределы интегрирования либо изначально поставить «минус» перед интегралом.

Решение и ответ Примера №7 в конце урока.

Заключительный мини-раздел посвящен более редкой задаче:

Как найти объем тела вращения,
если фигура ограничена параметрически заданной линией?

Актуализируем формулу, выведенную в начале урока: . Общая методика решения точно такая же, как и при нахождении площади. Выдерну немногочисленные задачи из своей копилки.



Поделиться: