Объем тела при вращении. Использование интегралов для нахождения объемов тел вращения. Как вычислить объем тела вращения

Определение 3. Тело вращения – это тело, полученное вращением плоской фигуры вокруг оси, не пересекающей фигуру и лежащей с ней в одной плоскости.

Ось вращения может и пересекать фигуру, если это ось симметрии фигуры.

Теорема 2.
, осью
и отрезками прямых
и

вращается вокруг оси
. Тогда объём получающегося тела вращения можно вычислить по формуле

(2)

Доказательство. Для такого тела сечение с абсциссой – это круг радиуса
, значит
и формула (1) даёт требуемый результат.

Если фигура ограничена графиками двух непрерывных функций
и
, и отрезками прямых
и
, причём
и
, то при вращении вокруг оси абсцисс получим тело, объём которого

Пример 3. Вычислить объём тора, полученного вращением круга, ограниченного окружностью

вокруг оси абсцисс.

Решение. Указанный круг снизу ограничен графиком функции
, а сверху –
. Разность квадратов этих функций:

Искомый объём

(графиком подынтегральной функции является верхняя полуокружность, поэтому написанный выше интеграл – это площадь полукруга).

Пример 4. Параболический сегмент с основанием
, и высотой, вращается вокруг основания. Вычислить объём получающегося тела («лимон» Кавальери).

Решение. Параболу расположим как показано на рисунке. Тогда её уравнение
, причем
. Найдём значение параметра:
. Итак, искомый объём:

Теорема 3. Пусть криволинейная трапеция, ограниченная графиком непрерывной неотрицательной функции
, осью
и отрезками прямых
и
, причём
, вращается вокруг оси
. Тогда объём получающегося тела вращения может быть найден по формуле

(3)

Идея доказательства. Разбиваем отрезок
точками

, на части и проводим прямые
. Вся трапеция разложится на полоски, которые можно считать приближенно прямоугольниками с основанием
и высотой
.

Получающийся при вращении такого прямоугольника цилиндр разрежем по образующей и развернём. Получим «почти» параллелепипед с размерами:
,
и
. Его объём
. Итак, для объёма тела вращения будем иметь приближенноё равенство

Для получения точного равенства надо перейти к пределу при
. Написанная выше сумма есть интегральная сумма для функции
, следовательно, в пределе получим интеграл из формулы (3). Теорема доказана.

Замечание 1. В теоремах 2 и 3 условие
можно опустить: формула (2) вообще нечувствительна к знаку
, а в формуле (3) достаточно
заменить на
.

Пример 5. Параболический сегмент (основание
, высота) вращается вокруг высоты. Найти объём получающегося тела.

Решение. Расположим параболу как показано на рисунке. И хотя ось вращения пересекает фигуру, она – ось – является осью симметрии. Поэтому надо рассматривать лишь правую половину сегмента. Уравнение параболы
, причем
, значит
. Имеем для объёма:

Замечание 2. Если криволинейная граница криволинейной трапеции задана параметрическими уравнениями
,
,
и
,
то можно использовать формулы (2) и (3) с заменойна
и
на
при измененииt от
до.

Пример 6. Фигура ограничена первой аркой циклоиды
,
,
, и осью абсцисс. Найти объём тела, полученного вращением этой фигуры вокруг: 1) оси
; 2) оси
.

Решение. 1) Общая формула
В нашем случае:

2) Общая формула
Для нашей фигуры:

Предлагаем студентам самостоятельно провести все вычисления.

Замечание 3. Пусть криволинейный сектор, ограниченный непре-рывной линией
и лучами
,

, вращается вокруг полярной оси. Объём получающегося тела можно вычислить по формуле.

Пример 7. Часть фигуры, ограниченной кардиоидой
, лежащая вне окружности
, вращается вокруг полярной оси. Найти объём тела, которое при этом получается.

Решение. Обе линии, а значит и фигура, которую они ограничивают, симметричны относительно полярной оси. Поэтому необходимо рассматривать лишь ту часть, для которой
. Кривые пересекаются при
и

при
. Далее, фигуру можно рассматривать как разность двух секторов, а значит и объём вычислять как разность двух интегралов. Имеем:

Задачи для самостоятельного решения.

1. Круговой сегмент, основание которого
, высота , вращается вокруг основания. Найти объём тела вращения.

2. Найти объём параболоида вращения, основание которого , а высота равна.

3. Фигура, ограниченная астроидой
,
вращает-ся вокруг оси абсцисс. Найти объём тела, которое получается при этом.

4. Фигура, ограниченная линиями
и
вращается вокруг оси абсцисс. Найти объём тела вращения.

Использование интегралов для нахождения объемов тел вращения

Практическая полезность математики обусловлена тем, что без

конкретных математических знаний затруднено понимание принципов устройства и использование современной техники. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, пользоваться общеупотребительной техникой, находить в справочниках применять нужные формулы, составлять несложные алгоритмы для решения задач. В современном обществе все больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики. Таким образом, для школьника математика становится профессиональным значимым предметом. Ведущая роль принадлежит математике в формировании алгоритмического мышления, воспитывает умение действовать по заданному алгоритму и конструировать новые алгоритмы.

Изучая тему о применении интеграла для вычисления объемов тел вращения, я предлагаю учащимся на факультативных занятиях рассмотреть тему: «Объемы тел вращения с применением интегралов». Ниже привожу методические рекомендации по рассмотрению данной темы:

1.Площадь плоской фигуры.

Из курса алгебры мы знаем, что к понятию определенного интеграла привели задачи практического характера..gif" width="88" height="51">.jpg" width="526" height="262 src=">

https://pandia.ru/text/77/502/images/image006_95.gif" width="127" height="25 src=">.

Для нахождения объема тела вращения, образованного вращением криволинейной трапеции вокруг оси Оx, ограниченной прерывной линией y=f(x), осью Оx, прямыми x=a и x=b вычислим по формуле

https://pandia.ru/text/77/502/images/image008_26.jpg" width="352" height="283 src=">Y

3.Объем цилиндра.

https://pandia.ru/text/77/502/images/image011_58.gif" width="85" height="51">..gif" width="13" height="25">..jpg" width="401" height="355">Конус получается путем вращения прямоугольного треугольника АВС(С=90) вокруг оси Оx на котором лежит катет АС.

Отрезок АВ лежит на прямой y=kx+c, где https://pandia.ru/text/77/502/images/image019_33.gif" width="59" height="41 src=">.

Пусть а=0, b=H (Н- высота конуса), тогда Vhttps://pandia.ru/text/77/502/images/image021_27.gif" width="13" height="23 src=">.

5.Объем усеченного конуса.

Усеченный конус можно получить путем вращения прямоугольной трапецией АВСD (СDOx) вокруг оси Оx.

Отрезок АВ лежит на прямой y=kx+c, где , c=r.

Так как прямая проходит через точку А (0;r).

Таким образом прямая имеет вид https://pandia.ru/text/77/502/images/image027_17.gif" width="303" height="291 src=">

Пусть а=0, b=H (Н- высота усеченного конуса), тогда https://pandia.ru/text/77/502/images/image030_16.gif" width="36" height="17 src=">= .

6. Объем шара.

Шар можно получить путем вращения круга с центром (0;0) вокруг оси Оx. Полуокружность, расположенная над осью Оx, задается уравнением

https://pandia.ru/text/77/502/images/image034_13.gif" width="13" height="16 src=">x R.

I. Объемы тел вращения. Предварительно изучите по учебнику Г. М. Фихтенгольца главу XII, п°п° 197, 198* Разберите подробно примеры, приведенные в п° 198.

508. Вычислить объем тела, образуемого вращением эллипсаВокруг оси Ох.

Таким образом,

530. Найти площадь поверхности, образованной вращением вокруг оси Ox дуги синусоиды у = sin х от точки X = 0 до точки X = It.

531. Вычислить площадь поверхности конуса с высотой h и радиусом г.

532. Вычислить площадь поверхности, образованной

вращением астроиды х3 -)- у* — а3 вокруг оси Ох.

533. Вычислить площадь поверхности, образованной цращением петли кривой 18 уг — х (6 — х)г вокруг оси Ох.

534. Найти поверхность тора, производимого вращением круга X2 - j - (у—З)2 = 4 вокруг оси Ох.

535. Вычислить площадь поверхности, образованной вращением окружности X = a cost, y = asint вокруг оси Ох.

536. Вычислить площадь поверхности, образованной вращением петли кривой х = 9t2, у = St — 9t3 вокруг оси Ох.

537. Найти площадь поверхности, образованной вращением дуги кривой х = е*sint, у = el cost вокруг оси Ox

от t = 0 до t = —.

538. Показать, что поверхность, производимая вращением дуги циклоиды х = a (q> —sin ф), у = а (I — cos ф) вокруг оси Oy, равна 16 и2 о2.

539. Найти поверхность, полученную вращением кардиоидыВокруг полярной оси.

540. Найти площадь поверхности, образованной вращением лемнискатыВокруг полярной оси.

Дополнительные задачи к главе IV

Площади плоских фигур

541. Найтивсю площадь области, ограниченной кривойИ осью Ох.

542. Найти площадь области, ограниченной кривой

И осью Ох.

543. Найти часть площади области, расположенной в первом квадранте и ограниченной кривой

л осями координат.

544. Найти площадь области, содержащейся внутри

петли:

545. Найти площадь области, ограниченной одной петлей кривой:

546. Найти площадь области, содержащейся внутри петли:

547. Найти площадь области, ограниченной кривой

И осью Ох.

548. Найти площадь области, ограниченной кривой

И осью Ох.

549. Найти площадь области, ограниченной осью Oxr

прямойИ кривой

плоской фигуры вокруг оси

Пример 3

Дана плоская фигура, ограниченная линиями , , .

1) Найти площадь плоской фигуры, ограниченной данными линиями.

2) Найти объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси .

Внимание! Даже если вы хотите ознакомиться только со вторым пунктом, сначала обязательно прочитайте первый!

Решение : Задача состоит из двух частей. Начнем с площади.

1) Выполним чертёж:

Легко заметить, что функция задает верхнюю ветку параболы, а функция – нижнюю ветку параболы. Перед нами тривиальная парабола, которая «лежит на боку».

Нужная фигура, площадь которой предстоит найти, заштрихована синим цветом.

Как найти площадь фигуры? Её можно найти «обычным» способом. Причем, площадь фигуры находится как сумма площадей:

– на отрезке ;

– на отрезке .

Поэтому:

Есть более рациональный путь решения: он состоит в переходе к обратным функциям и интегрированию по оси .

Как перейти к обратным функциям? Грубо говоря, нужно выразить «икс» через «игрек». Сначала разберемся с параболой:

Этого достаточно, но убедимся, что такую же функцию можно вывести из нижней ветки:

С прямой всё проще:

Теперь смотрим на ось : пожалуйста, периодически наклоняйте голову вправо на 90 градусов по ходу объяснений (это не прикол!). Нужная нам фигура лежит на отрезке , который обозначен красным пунктиром. При этом на отрезке прямая расположена выше параболы , а значит, площадь фигуры следует найти по уже знакомой вам формуле: . Что поменялось в формуле? Только буква, и не более того.

! Примечание : Пределы интегрирования по оси следует расставлять строго снизу вверх !

Находим площадь:

На отрезке , поэтому:

Обратите внимание, как я осуществил интегрирование, это самый рациональный способ, и в следующем пункте задания будет понятно – почему.

Для читателей, сомневающихся в корректности интегрирования, найду производные:

Получена исходная подынтегральная функция, значит интегрирование выполнено правильно.

Ответ :

2) Вычислим объем тела, образованного вращением данной фигуры, вокруг оси .

Перерисую чертеж немного в другом оформлении:

Итак, фигура, заштрихованная синим цветом, вращается вокруг оси . В результате получается «зависшая бабочка», которая вертится вокруг своей оси.


Для нахождения объема тела вращения будем интегрировать по оси . Сначала нужно перейти к обратным функциям. Это уже сделано и подробно расписано в предыдущем пункте.

Теперь снова наклоняем голову вправо и изучаем нашу фигуру. Очевидно, что объем тела вращения, следует найти как разность объемов.

Вращаем фигуру, обведенную красным цветом, вокруг оси , в результате получается усеченный конус. Обозначим этот объем через .

Вращаем фигуру, обведенную зеленым цветом, вокруг оси и обозначаем через объем полученного тела вращения.

Объем нашей бабочки равен разности объемов .

Используем формулу для нахождения объема тела вращения:

В чем отличие от формулы предыдущего параграфа? Только в букве.

А вот и преимущество интегрирования, о котором я недавно говорил, гораздо легче найти , чем предварительно возводить подынтегральную функцию в 4-ую степень.

Ответ :

Заметьте, что если эту же плоскую фигуру вращать вокруг оси , то получится совершенно другое тело вращения, другого, естественно, объема.

Пример 7

Вычислить объем тела, образованного вращением вокруг оси фигуры, ограниченной кривыми и .

Решение : Выполним чертеж:

Попутно знакомимся с графиками некоторых других функций. Такой вот интересный график чётной функции ….

Для цели нахождения объема тела вращения достаточно использовать правую половину фигуры, которую я заштриховал синим цветом. Обе функции являются четными, их графики симметричны относительно оси , симметрична и наша фигура. Таким образом, заштрихованная правая часть, вращаясь вокруг оси , непременно совпадёт с левой нештрихованной частью. или . В действительности я и сам всегда страхуюсь, подставляя в найденную обратную функцию пару точек графика.

Теперь наклоняем голову вправо и замечаем следующую вещь:

– на отрезке над осью расположен график функции ;

Логично предположить, что объем тела вращения нужно искать уже как сумму объемов тел вращений!

Используем формулу:

В данном случае.

Объем тела вращения можно вычислить по формуле :

В формуле перед интегралом обязательно присутствует число . Так повелось – всё, что в жизни крутится, связано с этой константой.

Как расставить пределы интегрирования «а» и «бэ», думаю, легко догадаться из выполненного чертежа.

Функция … что это за функция? Давайте посмотрим на чертеж. Плоская фигура ограничена графиком параболысверху. Это и есть та функция, которая подразумевается в формуле.

В практических заданиях плоская фигура иногда может располагаться и ниже оси . Это ничего не меняет – подынтегральная функция в формуле возводится в квадрат:, таким образоминтеграл всегда неотрицателен , что весьма логично.

Вычислим объем тела вращения, используя данную формулу:

Как я уже отмечал, интеграл почти всегда получается простой, главное, быть внимательным.

Ответ :

В ответе нужно обязательно указать размерность – кубические единицы . То есть, в нашем теле вращения примерно 3,35 «кубиков». Почему именно кубическиеединицы ? Потому что наиболее универсальная формулировка. Могут быть кубические сантиметры, могут быть кубические метры, могут быть кубические километры и т.д., это уж, сколько зеленых человечков ваше воображение поместит в летающую тарелку.

Пример 2

Найти объем тела, образованного вращением вокруг оси фигуры, ограниченной линиями,,

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотрим две более сложные задачи, которые тоже часто встречаются на практике.

Пример 3

Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями ,,и

Решение : Изобразим на чертеже плоскую фигуру, ограниченную линиями ,,,, не забывая при этом, что уравнениезадает ось:

Искомая фигура заштрихована синим цветом. При её вращении вокруг оси получается такой сюрреалистический бублик с четырьмя углами.

Объем тела вращения вычислим как разность объемов тел .

Сначала рассмотрим фигуру, которая обведена красным цветом. При её вращении вокруг оси получается усеченный конус. Обозначим объем этого усеченного конуса через.

Рассмотрим фигуру, которая обведена зеленым цветом. Если вращать данную фигуру вокруг оси , то получится тоже усеченный конус, только чуть поменьше. Обозначим его объем через.

И, очевидно, разность объемов – в точности объем нашего «бублика».

Используем стандартную формулу для нахождения объема тела вращения:

1) Фигура, обведенная красным цветом ограничена сверху прямой , поэтому:

2) Фигура, обведенная зеленым цветом ограничена сверху прямой , поэтому:

3) Объем искомого тела вращения:

Ответ :

Любопытно, что в данном случае решение можно проверить, используя школьную формулу для вычисления объема усеченного конуса.

Само решение чаще оформляют короче, примерно в таком духе:

Теперь немного отдохнем, и расскажу о геометрических иллюзиях.

У людей часто возникают иллюзии, связанная с объемами, которую подметил еще Перельман (другой) в книге Занимательная геометрия . Посмотрите на плоскую фигуру в прорешанной задаче – она вроде бы невелика по площади, а объем тела вращения составляет чуть более 50 кубических единиц, что кажется слишком большим. Кстати, среднестатистический человек за всю свою жизнь выпивает жидкость объемом с комнату площадью 18 квадратных метров, что, наоборот, кажется слишком маленьким объемом.

Вообще, система образования в СССР действительно была самой лучшей. Та же книга Перельмана, изданная ещё в 1950 году, очень хорошо развивает, как сказал юморист, соображаловку и учит искать оригинальные нестандартные решения проблем. Недавно с большим интересом перечитал некоторые главы, рекомендую, доступно даже для гуманитариев. Нет, не нужно улыбаться, что я предложил беспонтовое времяпровождение, эрудиция и широкий кругозор в общении – отличная штука.

После лирического отступления как раз уместно решить творческое задание:

Пример 4

Вычислить объем тела, образованного вращением относительно оси плоской фигуры, ограниченной линиями,, где.

Это пример для самостоятельного решения. Обратите внимание, что все дела происходят в полосе , иными словами, фактически даны готовые пределы интегрирования. Правильно начертите графики тригонометрических функций, напомню материал урока огеометрических преобразованиях графиков : если аргумент делится на два: , то графики растягиваются по осив два раза. Желательно найти хотя бы 3-4 точкипо тригонометрическим таблицам , чтобы точнее выполнить чертеж. Полное решение и ответ в конце урока. Кстати, задание можно решить рационально и не очень рационально.



Поделиться: