Б. Расчет эксцентриковых зажимов. Эксцентриковые зажимы. Расчет сил зажима в круговом эксцентрике Эксцентриковые зажимы преимущества и недостатки

При больших программах выпуска изделий широко применяют быстродействующие зажимы. Одним из видов таких ручных зажимов являются эксцентриковые, в которых поворотом эксцентриков создаются усилия зажима.

Значительные усилия при малой площади касания рабочей поверхности эксцентрика могут вызвать повреждение поверхности детали. Поэтому обычно эксцентрик действует на деталь через подкладку, толкатели, рычаги или тяги.

Зажимные эксцентрики могут быть с различным профилем рабочей поверхности: в виде окружности (круглые эксцентрики) и со спиральным профилем (в виде логарифмической или архимедовой спирали).

Круглый эксцентрик представляет собой цилиндр (валик или кулачок), ось которого расположена эксцентрично по отношению к оси вращения (фиг. 176, а, бив). Такие эксцентрики наиболее просты в изготовлении. Для поворота эксцентрика служит рукоятка. Эксцентриковые зажимы выполняют часто в виде кривошипных валиков с одной или двумя опорами.

Эксцентриковые зажимы всегда ручные, поэтому основным условием правильной работы их является сохранение углового положения эксцентрика после его поворота для зажатия - «самоторможение эксцентрика». Это свойство эксцентрика определяется отношением диаметра О цилиндрической рабочей поверхности к эксцентриситету е. Это отношение называется характеристикой эксцентрика. При определенном отношении – условие самоторможения эксцентрика выполняется.

Обычно диаметром Б круглого эксцентрика задаются из конструктивных соображений, а эксцентриситет е рассчитывают исходя из условий самоторможения.

Линия симметрии эксцентрика делит его на две части. Можно представить себе два клина, одним из которых при повороте эксцентрика закрепляется деталь. Положение эксцентрика при его контакте с поверхностью детали минимального размера.

Обычно положение участка профиля эксцентрика, который участвует в работе, выбирают так. чтобы при горизонтальном положении линий 0\02 эксцентрик касался бы точкой с2 зажимаемой летали средних размеров. При зажиме деталей с максимальными и минимальными размерами детали будут касаться соответственно точек сI и с3 эксцентрика, симметрично расположенных относительно точки с2. Тогда активным профилем эксцентрика будет дуга С1С3. При этом часть эксцентрика, ограниченную на фигуре штриховой линией, можно удалить (при этом ручку надо переставить в другое место).

Угол а между зажимаемой поверхностью и нормалью к радиусу вращения называют углом подъема. Он различен при разных угловых положениях эксцентрика. Из развертки видно, что при касании детали и эксцентрика точками а и Б угол а равен нулю. Его величина наибольшая при касании эксцентрика точкой с2. При малых углах клиньев возможно заедание, при больших - самопроизвольное ослабление. Поэтому зажим при касании с деталью точек эксцентрика а и б нежелателен. Для спокойного и надежного закрепления детали необходимо, чтобы эксцентрик соприкасался на участке С\С3 с деталью, когда угол а не бывает равен нулю и не может колебаться в широких пределах.


Рабочая часть этих зажимов выполнена в виде цилиндрических или криволинейных кулачковых валиков. Зажим с их помощью осуществляется быстрее, чем с помощью винтовых устройств, однако возможность их применения более ограничена по сравнению с винтовыми, т.к. они хорошо работают только при незначительных отклонениях размеров поверхностей, по которым обрабатываемые детали укрепляются и при отсутствии вибраций.

1 – цилиндрический эксцентрик имеет широкое применение, т.к. прост в изготовлении. Недостатком такой конструкции является малый ход и непостоянство тормозящих свойств.

2 – отличается наличием среза для увеличения хода при установке и снятии обрабатываемой детали.

3 – имеет наибольшее применение на практике. Рабочая поверхность эксцентрика ограничивается сектором 60 - 90°, остальное срезается. Такой кулачок целесообразно применять для отвода зажимного механизма при установке и снятии детали на значительные расстояния (до 45 мм).

4 – зажим представляет собой сдвоенный кулачок 3 и применяется в центрирующих механизмах и плавающих тисках.

Все эти кулачки закрепляются на валу и при помощи рукоятки, прикрепленной к валу, вращаются вместе с ним.

5 – эксцентриковый рычаг, т.к. эксцентриковый кулачок в нем соединен с рукояткой. Диапазон их действия меньше, чем кулачков.

Сила зажима заготовки:

где Q – сила на рукоятке;

L – длина рукоятки;

j - угол трения покоя (» 8°);

е – эксцентриситет;

a - угол подъема клина;

6 и 7 – эксцентриковые валики. Применяются в качестве запирающих механизмов для точно исполненных подвижных частей приспособлений. В этих случаях не требуется значительный эксцентриситет, а следовательно, можно применить валик малого диаметра. предпочтение следует отдавать двухопорным валикам 6, как более жестким и надежным против изгиба.

Рабочая поверхность эксцентриков может выполняться в виде окружности и криволинейной – в виде эвольвенты и спирали Архимеда. Различие их в том, что в развертке круговых эксцентриков клин получается криволинейным с предельным углом a, отсюда нестабильность зажима. В то же время технология изготовления круговых эксцентриков значительно проще, чем криволинейных. Самотормозящие свойства эксцентриков увеличиваются с увеличением угла поворота. Рекомендуемый угол поворота a э = 30 - 135°

Материал для эксцентриков – сталь 20Х с цементацией на глубину 0,8 – 1,2 мм и закалкой до HRC 55…60.

Эксцентриковые зажимы являются быстродействующими, но они развивают меньшую силу зажима, чем винтовые, имеет ограниченные линейные перемещения.

В станочных приспособлениях используют круглые и криволинейные эксцентриковые зажимы. Круглый эксцентрик применяемый в предлагаемой конструкции представляет собой диск, поворачиваемый вокруг оси О, смещенный относительно геометрической оси эксцентрика на некоторую величину е, называемую эксцентриситетом. Для крепления обрабатываемой детали эксцентриковые зажимы должны быть самотормозящимися.

Круглые эксцентрики изготавливают из стали 20Х, цементируют на глубину 0,6….1,2 мм и затем закаливают до твердости 58….62HRC э. Некоторые виды круглых эксцентриков выполняется по ГОСТ 9061-68

Из теоретической механики известно, что условие самоторможения двух трущихся тел следующие: угол трения больше или равен углу подъема, под которым происходит трение. Следовательно, если, угол подъема эксцентрика в определенном его положении не больше угла трения, то эксцентрика является самотормозящимся. Самотормозящиеся эксцентрики после зажима обрабатываемой детали не изменяемой своего положения. Самоторможение эксцентриковых зажимов обеспечиваются при определенном отношения его наружного диаметра и эксцентриситету е.

При расчете основных размеров круглого эксцентрика необходимо иметь следующие величины.


Эксцентриситет круглого эксцентрика (44):


Радиус наружной поверхности эксцентрика определяется из условия его самоторможения:

Угол поворота эксцентрика, соответствующей наименее выгодную для самоторможения положения зажима.

Зажимы эксцентриковые просты в изготовлении по этой причине нашли широкое применение в станочных приспособлениях. Применение эксцентриковых зажимов позволяет значительно сократить время на зажим заготовки но усилие зажима уступает резьбовым.

Эксцентриковые зажимы выполняются в сочетании с прихватами и без них.

Рассмотрим эксцентриковый зажим с прихватом.


Эксцентриковые зажимы не могут работать при значительных отклонениях допуска (±δ) заготовки. При больших отклонениях допуска зажим требует постоянной регулировки винтом 1.

Расчёт эксцентрика

Материалом применяемом для изготовления эксцентрика являются У7А, У8А с термообработкой до HR с 50....55ед, сталь 20Х с цементацией на глубину 0,8... 1,2 С закалкой HR c 55...60ед.

Рассмотрим схему эксцентрика. Линия KN делит эксцентрик на дв? симметричные половины состоящие как бы из 2 х клиньев, навернутых на «начальную окружность».


Ось вращения эксцентрика смещена относительно его геометрической оси на величину эксцентриситета «е».

Для зажима обычно используется участок Nm нижнего клина.

Рассматривая механизм как комбинированный состоящий из рычага L и клина с трением на двух поверхностях на оси и точки «m» (точка зажима), получим силовую зависимость для расчёта усилия зажима.


где Q - усилие зажима

Р - усилие на рукоятке

L - плечо рукоятки

r -расстояние от оси вращения эксцентрика до точки соприкосновения с

заготовкой

α - угол подъёма кривой

α 1 - угол трения между эксцентриком и заготовкой

α 2 - угол трения на оси эксцентрика

Во избежание отхода эксцентрика во время работы необходимо соблюдать условие самоторможение эксцентрика

где α - угол трения скольжения в точке касания заготовки ø - коэффициент трения

Для приближённых расчётов Q - 12Р Рассмотрим схему двухстороннего зажима с эксцентриком



Клиновые зажимы

Клиновые зажимные устройства нашли широкое применение в станочных приспособлениях. Основным элементом их является одно, двух и трёхскосые клинья. Использование таких элементов обусловлено простотой и компактностью конструкций, быстротой действия и надёжностью в работе, возможностью использования их в качестве зажимного элемента, действующего непосредственно на закрепляемую заготовку, так и качестве промежуточного звена, например, звена-усилителя в других зажимных устройствах. Обычно используются самотормозящиеся клинья. Условие самоторможения односкосого клина выражается зависимостью

α > 2ρ

где α - угол клина



ρ - угол трения на поверхностях Г и Н контакта клина с сопрягаемыми деталями.

Самоторможение обеспечивается при угле α = 12°, однако для предотвращения того чтобы вибрации и колебания нагрузки в процессе использования зажима не ослабли крепления заготовки, часто применяют клинья с углом α <12°.

Вследствие того, что уменьшение угла приводит к усилению

самотормозящих свойств клина, необходимо при конструировании привода к клиновому механизму предусматривать устройства, облегчающие вывод клина из рабочего состояния, так как освободить нагруженный клин труднее, чем вывести его в рабочее состояние.


Этого можно достичь путём соединения штока приводного механизма с клином. При движении штока 1 влево он проходит путь «1» в холостую, а затем ударяясь в штифт 2, запрессованный в клин 3, выталкивает последний. При обратном ходе штока так же ударом в штифт заталкивает клин в рабочее положение. Это следует учитывать в случаях, когда клиновой механизм приводится в действие пневмо или гидроприводом. Тогда для обеспечения надёжности работы механизма следует создавать разное давление жидкости или сжатого воздуха с разных сторон поршня привода. Это различие при использовании пневмоприводов может быть достигнуто применением редукционного клапана в одной из трубок, подводящих воздух или жидкость к цилиндру. В случаях, когда самоторможение не требуется, целесообразно применять ролики на поверхностях контакта клина с сопряжёнными деталями приспособления, тем самым облегчается ввод клина в исходное положение. В этих случаях обязательно стопорение клина.

Зажимы эксцентриковые просты в изготовлении по этой причине нашли широкое применение в станочных приспособлениях. Применение эксцентриковых зажимов позволяет значительно сократить время на зажим заготовки но усилие зажима уступает резьбовым.

Эксцентриковые зажимы выполняются в сочетании с прихватами и без них.

Рассмотрим эксцентриковый зажим с прихватом.

Эксцентриковые зажимы не могут работать при значительных отклонениях допуска (±δ) заготовки. При больших отклонениях допуска зажим требует постоянной регулировки винтом 1.

Расчёт эксцентрика


М
атериалом применяемом для изготовления эксцентрика являются У7А, У8Ас термообработкой до HR с 50....55ед, сталь 20Х с цементацией на глубину 0,8... 1,2 С закалкой HR c 55...60ед.

Рассмотрим схему эксцентрика. Линия KN делит эксцентрик на дв? симметричные половины состоящие как бы из 2 х клиньев, навернутых на «начальную окружность».

Ось вращения эксцентрика смещена относительно его геометрической оси на величину эксцентриситета «е».

Для зажима обычно используется участок Nm нижнего клина.

Рассматривая механизм как комбинированный состоящий из рычага L и клина с трением на двух поверхностях на оси и точки «m» (точка зажима), получим силовую зависимость для расчёта усилия зажима.

где Q - усилие зажима

Р - усилие на рукоятке

L - плечо рукоятки

r -расстояние от оси вращения эксцентрика до точки соприкосновения с

заготовкой

α - угол подъёма кривой

α 1 - угол трения между эксцентриком и заготовкой

α 2 - угол трения на оси эксцентрика

Во избежание отхода эксцентрика во время работы необходимо соблюдать условие самоторможение эксцентрика

Условие самоторможения эксцентрика. = 12Р

о чяжима с экспентоиком

г
деα - угол трения скольжения в точке касания заготовки ø - коэффициент трения

Для приближённых расчётов Q - 12Р Рассмотрим схему двухстороннего зажима с эксцентриком

Клиновые зажимы

Клиновые зажимные устройства нашли широкое применение в станочных приспособлениях. Основным элементом их является одно, двух и трёхскосые клинья. Использование таких элементов обусловлено простотой и компактностью конструкций, быстротой действия и надёжностью в работе, возможностью использования их в качестве зажимного элемента, действующего непосредственно на закрепляемую заготовку, так и качестве промежуточного звена, например, звена-усилителя в других зажимных устройствах. Обычно используются самотормозящиеся клинья. Условие самоторможения односкосого клина выражается зависимостью

α > 2 ρ

где α - угол клина

ρ - угол трения на поверхностях Г и Н контакта клина с сопрягаемыми деталями.

Самоторможение обеспечивается при угле α = 12°, однако для предотвращения того чтобы вибрации и колебания нагрузки в процессе использования зажима не ослабли крепления заготовки, часто применяют клинья с углом α <12°.

Вследствие того, что уменьшение угла приводит к усилению

самотормозящих свойств клина, необходимо при конструировании привода к клиновому механизму предусматривать устройства, облегчающие вывод клина из рабочего состояния, так как освободить нагруженный клин труднее, чем вывести его в рабочее состояние.

Этого можно достичь путём соединения штока приводного механизма с клином. При движении штока 1 влево он проходит путь «1» в холостую, а затем ударяясь в штифт 2, запрессованный в клин 3, выталкивает последний. При обратном ходе штока так же ударом в штифт заталкивает клин в рабочее положение. Это следует учитывать в случаях, когда клиновой механизм приводится в действие пневмо или гидроприводом. Тогда для обеспечения надёжности работы механизма следует создавать разное давление жидкости или сжатого воздуха с разных сторон поршня привода. Это различие при использовании пневмоприводов может быть достигнуто применением редукционного клапана в одной из трубок, подводящих воздух или жидкость к цилиндру. В случаях, когда самоторможение не требуется, целесообразно применять ролики на поверхностях контакта клина с сопряжёнными деталями приспособления, тем самым облегчается ввод клина в исходное положение. В этих случаях обязательно стопорение клина.

Рассмотрим схему действия сил в односкосом, наиболее часто применяемом в приспособлениях, клиновом механизме

Построим силовой многоугольник.

При передачи сил под прямым углом имеем следующую зависимость

+закрепление, - открепление

Самоторможение имеет место при α<α 1 +α 2 Если α 1 =α 2 =α 3 =α зависимость более простая P = Qtg(α+2φ)

Цанговые зажимы

Цанговый зажимной механизм известен достаточно давно. Закрепление заготовок при помощи цанг оказался очень удобным при создании автоматизированных станков потому, что для закрепления заготовки требуется лишь одно поступательное движение зажимаемой цанги.

При работе цанговых механизмов должны выполняться следующие требования.

    Силы закрепления должны обеспечиваться в соответствие с возникающими силами резания и не допускать перемещения заготовки или инструмента в процессе резания.

    Процесс закрепления в общем цикле обработки является вспомогательным движением поэтому время срабатывание цангового зажима должно быть минимальным.

    Размеры звеньев зажимного механизма должны определяться из условий их нормальной работы при закреплении заготовок как наибольшего так и наименьших размеров.

    Погрешность базирования закрепляемых заготовок или инструмента должна быть минимальной.

    Конструкция зажимного механизма должна обеспечивать наименьшие упругие отжатия в процессе обработки заготовок и обладать высокой виброустойчивостью.

    Детали цангового зажимного и особенно зажимная цанга должны обладать высокой износоустойчивостью.

    Конструкция зажимного устройства должна допускать его быструю смену и удобную регулировку.

    Конструкция механизма должна предусматривать защиту цанг от попадания стружки.

Цанговые зажимные механизмы работают в широком диапазоне размеров. Практически минимальный допустимый размер для закрепления 0,5 мм. На многошпиндельных прутковых автоматах диаметры прутков, а

следовательно и отверстия цанг доходят до 100 мм. Цанги с большим диаметром отверстия применяются для закрепления тонкостенных труб, т.к. относительное равномерное закрепление по всей поверхности не вызывает больших деформаций труб.

Цанговый зажимной механизм позволяет производить закрепление заготовок различной формы поперечного сечения.

Стойкость цанговых зажимных механизмов колеблется в широких пределах и зависит от конструкции и правильности технологических процессов при изготовлении деталей механизма. Как правило раньше других их строя выходят зажимные цанги. При этом количество закреплений цангами колеблется от единицы (поломка цанги) до полумиллиона и более (износ губок). Работа цанги считается удовлетворительной, если она способна закрепить не менее 100000 заготовок.

Классификация цанг

Все цанги могут быть разбиты на три типа:

1. Цанги первого типа имеют «прямой» конус, вершина которого обращена от шпинделя станка.

Для закрепления необходимо создать силу втягивающую цангу в гайку, навинченную на шпиндель. Положительные качества этого типа цанг -они конструктивно достаточно просты и хорошо работают на сжатие (закалённая сталь имеет большое допустимое напряжение при сжатии чем при растяжении. Несмотря на это, цанги первого типа в настоящее время находят ограниченное применение из-за недостатков. Какие это недостатки:

а) осевая сила, действующая на цангу, стремится отпереть ее,

б) при подачи прутка возможно преждевременное запирание цанги,

в) при закреплении такой цангой возникает вредное воздействие на

г) наблюдается неудовлетворительное центрирование цанги в шпинделе, так как головка центрируется в гайке, положение которой на шпинделе не является стабильным из-за наличия резьбы.

Цанги второго типа имеют «обратный» конус, вершина которого обращена к шпинделю. Для закрепления необходимо создать силу, втягивающую цангу в коническое отверстие шпинделя станка.

Цангами этого типа обеспечивается хорошее центрирование закрепляемых заготовок, т. к. конус под цангу расположен непосредственно в шпинделе, во время подачи прутка до упора не может

возникнуть заклинивание, осевые рабочие силы не раскрывают цангу, а запирают её, увеличивая силу закрепления.

Вместе с тем ряд существенных недостатков снижает работоспособность цанг этого типа. Так многочисленных контактов с цангой коническое отверстие шпинделя сравнительно быстро изнашивается, резьба на цангах часто выходит из строя, не обеспечивая стабильного положения прутка по оси при закреплении - он уходит от упора. Тем не менее цанги второго типа получили широкое применение в станочных приспособлениях.

Цанги третьего типа имеют также обратный конус, но работают за счёт осевого перемещения втулки с коническим отверстием при этом сама цанга остаётся неподвижной.

Такая конструкция позволяет избежать большинства недостатков, присущих цангам первого и второго типа. Однако одним из существующих недостатков цанг этого типа является увеличение габаритных размеров всего зажимного узла по диаметру.

Для изготовления цанг средних и крупных размеров в основном используются стали марок 65Г, 12ХНЗА, У7А, У8А. Считается целесообразным использовать малоуглеродистые цементируемые стали. Опытные данные показывают, что цементируемые стали работают не хуже углеродистых. Наличие, например, никеля в цементируемой стали 12ХНЗА обеспечивает стойкость цанги на истирание, а цементация придает ей относительно хорошие пластические свойства. Тем не менее на большинстве заводов отдают предпочтение стали 65Г.

Р
ассмотрим какие усилия возникают при работе цанги при отсутствииосевого упора.

P = (Q+Q")tg( α + φ )

Q - усилие зажима поверхности загото вки рассчитывается по формуле

М - момент резания М = Р z V подставим значения момента резания

Где - V - расстояние от оси до точки приложения силы резания R - радиус заготовки на участки зажима.

q - составляющая часть усилия сдвигающая заготовку вдоль оси.

ƒ - стрела прогиба. к - коэффициент запаса

Q 1 - усилие необходимое для сжатия всех липесков цанги до соприкосновения с заготовкой.

φ - угол трения между цангой и корпусом

где Е - модуль упругости.

1 - момент инерции сектора в заделе цанги.

f - стрела прогиба.

l- длина леписка цанги от места задела до середины конуса.

Вакуумные зажимные устройства

Вакуумные зажимные устройства работают по принципу непосредственной передачи атмосферного давления на закрепляемую заготовку.

Вакуумные устройства могут применяться для удержания заготовок из различных материалов с плоской или криволинейной поверхностью. Сила закрепления достаточна для выполнения операций отделки и чистовой обработки. Вакуумные устройства весьма эффективны для закрепления тонких пластин. Базовые поверхности заготовки могут быть как чисто обработанными, так и чёрными, но достаточно ровными без заметных на глаз впадин и выступов.

При наличии шлифованных поверхностей допускается установка заготовок без уплотнения. Открепление заготовок осуществляется сообщением полости из которой выкачен воздух с атмосферой.

Сила прижимающая заготовку рассчитывается по такой формуле

Q = F(l,033-P) кг.

где F - площадь в см 2 , границы которой берутся по линии уплотнения Р -вакуум создаваемый в полости приспособления отсасывающим устройством.

На практике применяется вакуум 0,1 0,15кг/см 2

Применения более глубокого вакуума обходится дорого, а усилие закрепления увеличивается незначительно.

Для равномерного многоточечного прижима заготовки к плите на установочной плоскости выполняют большое количество отверстий равномерно расположенных.

В этом случае закрепление проходит без местного выпучивания и коробления заготовки. Вакуум для индивидуальных установок создается:

а) центробежными насосами Р = 0,3 кг/см 2

б) поршневыми одноступенчатыми Р = 0,005 кг/см 2

двухступенчатыми Р = 0,01 кг/см 2



Поделиться: