Вариационный ряд с. Вариационный ряд. Статистическое распределение выборки. Основные характеристики вариационного ряда. Как интерпретировать значение t-критерия Стьюдента

Вариационные ряды: определение, виды, основные характеристики. Методика расчета
моды, медианы, средней арифметической в медико-статистических исследованиях
(показать на условном примере).

Вариационный ряд – это ряд числовых значений изучаемого признака, отличающихся друг от друга по своей величине и расположенных в определенной последовательности(в восходящем или убывающем порядке). Каждое числовое значение ряда называют вариантой (V), а числа, показывающие, как часто встречается та или иная варианта в составе данного ряда, называется частотой (р).

Общее число случаев наблюдений, из которых вариационный ряд состоит, обозначают буквой n. Различие в значении изучаемых признаков называется вариацией. В случае если варьирующий признак не имеет количественной меры, вариацию называют качественной, а ряд распределения – атрибутивным (например, распределение по исходу заболевания, по состоянию здоровья и т.д.).

Если варьирующий признак имеет количественное выражение, такую вариацию называют количественной, а ряд распределения – вариационным.

Вариационные ряды делятся на прерывные и непрерывные – по характеру количественного признака, простые и взвешенные – по частоте встречаемости вариант.

В простом вариационном ряду каждая варианта встречается только один раз (р=1), во взвешенном – одна и та же варианта встречается несколько раз (р>1). Примеры таких рядов будут рассмотрены далее по тексту. Если количественный признак носит непрерывный характер, т.е. между целыми величинами имеются промежуточные дробные величины, вариационный ряд называется непрерывным.

Например: 10,0 – 11,9

14,0 – 15,9 и т.д.

Если количественный признак носит прерывный характер, т.е. отдельные его значения (варианты) отличаются друг от друга на целое число и не имеют промежуточных дробных значений, вариационный ряд называют прерывным или дискретным.

Используя данные предыдущего примера о частоте пульса

у 21 студентов, построим вариационный ряд (табл. 1).

Таблица 1

Распределение студентов-медиков по частоте пульса (уд/мин)

Таким образом, построить вариационный ряд – означает имеющиеся числовые значения (варианты) систематизировать, упорядочить, т.е. расположить в определенной последовательности (в восходящем или убывающем порядке) с соответствующими им частотами. В рассматриваемом примере варианты расположены в восходящем порядке и выражены в виде целых прерывных (дискретных) чисел, каждая варианта встречается несколько раз, т.е. мы имеем дело со взвешенным, прерывным или дискретным вариационным рядом.

Как правило, если число наблюдений в изучаемой нами статистической совокупности не превышает 30, то достаточно все значения изучаемого признака расположить в вариационном ряду в нарастающем, как в табл. 1, или убывающем порядке.

При большом количестве наблюдений (n>30) число встречающихся вариант может быть очень большим, в этом случае составляется интервальный или сгруппированный вариационный ряд, в котором для упрощения последующей обработки и выяснения характера распределения варианты объединены в группы.

Обычно число групповых вариант колеблется от 8 до 15.

Их должно быть не меньше 5, т.к. иначе это будет слишком грубое, чрезмерное укрупнение, что искажает общую картину варьирования и сильно сказывается на точности средних величин. При числе групповых вариант более 20-25 увеличивается точность вычисления средних величин, но существенно искажаются особенности варьирования признака и усложняется математическая обработка.

При составлении сгруппированного ряда необходимо учесть,

− группы вариант должны располагаться в определенном порядке (в восходящем или нисходящем);

− интервалы в группах вариант должны быть одинаковыми;

− значения границ интервалов не должны совпадать, т.к. неясно будет, в какие группы относить отдельные варианты;

− необходимо учитывать качественные особенности собираемого материала при установлении пределов интервалов (например, при изучении веса взрослых людей интервал 3-4 кг допустим, а для детей первых месяцев жизни он не должен превышать 100 г.)

Построим сгруппированный (интервальный) ряд, характеризующий данные о частоте пульса (число ударов в минуту) у 55 студентов-медиков перед экзаменом: 64, 66, 60, 62,

64, 68, 70, 66, 70, 68, 62, 68, 70, 72, 60, 70, 74, 62, 70, 72, 72,

64, 70, 72, 76, 76, 68, 70, 58, 76, 74, 76, 76, 82, 76, 72, 76, 74,

79, 78, 74, 78, 74, 78, 74, 74, 78, 76, 78, 76, 80, 80, 80, 78, 78.

Для построения сгруппированного ряда необходимо:

1. Определить величину интервала;

2. Определить середину, начало и конец групп вариант вариационного ряда.

● Величина интервала (i) определяется по числу предполагаемых групп (r), количество которых устанавливается в зависимости от числа наблюдений (n) по специальной таблице

Число групп в зависимости от числа наблюдений:

В нашем случае, для 55 студентов, можно составить от 8 до 10 групп.

Величина интервала (i) определяется по следующей формуле –

i = V max-V min/r

В нашем примере величина интервала равна 82- 58/8= 3.

Если величина интервала представляет собой дробное число, полученный результат следует округлить до целого числа.

Различают несколько видов средних величин:

● средняя арифметическая,

● средняя геометрическая,

● средняя гармоническая,

● средняя квадратическая,

● средняя прогрессивная,

● медиана

В медицинской статистике наиболее часто пользуются средними арифметическими величинами.

Средняя арифметическая величина (М) является обобщающей величиной, которая определяет то типичное, что характерно для всей совокупности. Основными способами расчета М являются: среднеарифметический способ и способ моментов (условных отклонений).

Среднеарифметический способ применяется для вычисления средней арифметической простой и средней арифметической взвешенной. Выбор способа расчета средней арифметической величины зависит от вида вариационного ряда. В случае простого вариационного ряда, в котором каждая варианта встречается только один раз, определяется средняя арифметическая простая по формуле:

где: М – средняя арифметическая величина;

V – значение варьирующего признака (варианты);

Σ – указывает действие – суммирование;

n – общее число наблюдений.

Пример расчета средней арифметической простой. Частота дыхания (число дыхательных движений в минуту) у 9 мужчин в возрасте 35 лет: 20, 22, 19, 15, 16, 21, 17, 23, 18.

Для определения среднего уровня частоты дыхания у мужчин в возрасте 35 лет необходимо:

1. Построить вариационный ряд, расположив все варианты в возрастающем или убывающем порядке Мы получили простой вариационный ряд, т.к. значения вариант встречаются только один раз.

M = ∑V/n = 171/9 = 19 дыхательных движений в минуту

Вывод. Частота дыхания у мужчин в возрасте 35 лет в среднем равна 19 дыхательным движениям в минуту.

Если отдельные значения вариант повторяются, незачем выписывать в линию каждую варианту, достаточно перечислить встречающиеся размеры вариант (V) и рядом указать число их повторений (р). такой вариационный ряд, в котором варианты как бы взвешиваются по числу соответствующих им частот, носит название – взвешенный вариационный ряд, а рассчитываемая средняя величина – средней арифметической взвешенной.

Средняя арифметическая взвешенная определяется по формуле: M= ∑Vp/n

где n – число наблюдений, равное сумме частот – Σр.

Пример расчета средней арифметической взвешенной.

Длительность нетрудоспособности (в днях) у 35 больных острыми респираторными заболеваниями (ОРЗ), лечившихся у участкового врача на протяжении I-го квартала текущего года составила: 6, 7, 5, 3, 9, 8, 7, 5, 6, 4, 9, 8, 7, 6, 6, 9, 6, 5, 10, 8, 7, 11, 13, 5, 6, 7, 12, 4, 3, 5, 2, 5, 6, 6, 7 дней.

Методика определения средней длительности нетрудоспособности у больных с ОРЗ следующая:

1. Построим взвешенный вариационный ряд, т.к. отдельные значения вариант повторяются несколько раз. Для этого можно расположить все варианты в возрастающем или убывающем порядке с соответствующими им частотами.

В нашем случае варианты расположены в возрастающем порядке

2. Рассчитаем среднюю арифметическую взвешенную по формуле: M = ∑Vp/n = 233/35 = 6,7 дней

Распределение больных с ОРЗ по длительности нетрудоспособности:

Длительность нетрудоспособности (V) Число больных (p) Vp
∑p = n = 35 ∑Vp = 233

Вывод. Длительность нетрудоспособности у больных с острыми респираторными заболеваниями составила в среднем 6,7 дней.

Мода (Мо) – наиболее часто встречающаяся варианта в вариационном ряду. Для распределения, представленного в таблице, моде соответствует варианта, равная 10, она встречается чаще других – 6 раз.

Распределение больных по длительности пребывания на больничной койке (в днях)

V
p

Иногда точную величину моды установить трудно, поскольку в изучаемых данных может существовать несколько наблюдений, встречающихся «наиболее часто».

Медиана (Ме) – непараметрический показатель, делящий вариационный ряд на две равные половины: в обе стороны от медианы располагается одинаковое число вариант.

Например, для распределения, указанного в таблице, медиана равна 10, т.к. по обе стороны от этой величины располагается по 14 вариант, т.е. число 10 занимает центральное положение в этом ряду и является его медианой.

Учитывая, что число наблюдений в этом примере четное (n=34), медиану можно определить таким образом:

Me = 2+3+4+5+6+5+4+3+2/2 = 34/2 = 17

Это означает, что середина ряда приходится на семнадцатую по счету варианту, которой соответствует медиана, равная 10. Для распределения, представленного в таблице, средняя арифметическая равна:

M = ∑Vp/n = 334/34 = 10,1

Итак, для 34 наблюдений из табл. 8, мы получили: Мо=10, Ме=10, средняя арифметическая (М) равна 10,1. В нашем примере все три показателя оказались равными или близкими друг к другу, хотя они совершенно различны.

Средняя арифметическая является результативной суммой всех влияний, в формировании ее принимают участие все без исключения варианты, в том числе и крайние, часто нетипичные для данного явления или совокупности.

Мода и медиана, в отличие от средней арифметической, не зависят от величины всех индивидуальных значений варьирующего признака (значений крайних вариант и степени рассеяния ряда). Средняя арифметическая характеризует всю массу наблюдений, мода и медиана – основную массу

Условие:

Имеются данные о возрастном составе рабочих (лет): 18, 38, 28, 29, 26, 38, 34, 22, 28, 30, 22, 23, 35, 33, 27, 24, 30, 32, 28, 25, 29, 26, 31, 24, 29, 27, 32, 25, 29, 29.

    1. Построить интервальный ряд распределения.
    2. Построить графическое изображение ряда.
    3. Графически определить моду и медиану.

Решение:

1) По формуле Стерджесса совокупность надо разделить на 1 + 3,322 lg 30 = 6 групп.

Максимальный возраст - 38, минимальный - 18.

Ширина интервала Так как концы интервалов должны быть целыми числами, разделим совокупность на 5 групп. Ширина интервала - 4.

Для облегчения подсчетов расположим данные в порядке возрастания: 18, 22, 22, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 31, 32, 32, 33, 34, 35, 38, 38.

Распределение возрастного состава рабочих

Графически ряд можно изобразить в виде гистограммы или полигона. Гистограмма - столбиковая диаграмма. Основание столбика - ширина интервала. Высота столбика равна частоте.

Полигон (или многоугольник распределения) - график частот. Чтобы его построить по гистограмме, соединяем середины верхних сторон прямоугольников. Многоугольник замыкаем на оси Ох на расстояниях, равных половине интервала от крайних значений х.

Мода (Мо) - это величина изучаемого признака, которая в данной совокупности встречается наиболее часто.

Чтобы определить моду по гистограмме, надо выбрать самый высокий прямоугольник, провести линию от правой вершины этого прямоугольника к правому верхнему углу предыдущего прямоугольника, и от левой вершины модального прямоугольника провести линию к левой вершине последующего прямоугольника. От точки пересечения этих линий провести перпендикуляр к оси х. Абсцисса и будет модой. Мо ≈ 27,5. Значит, наиболее часто встречаемый возраст в данной совокупности 27-28 лет.

Медиана (Mе) - это величина изучаемого признака, которая находится в середине упорядоченного вариационного ряда.

Медиану находим по кумуляте. Кумулята - график накопленных частот. Абсциссы - варианты ряда. Ординаты - накопленные частоты.

Для определения медианы по кумуляте находим по оси ординат точку, соответствующую 50% накопленных частот (в нашем случае 15), проводим через неё прямую, параллельно оси Ох, и от точки её пересечения с кумулятой проводим перпендикуляр к оси х. Абсцисса является медианой. Ме ≈ 25,9. Это означает, что половина рабочих в данной совокупности имеет возраст менее 26 лет.

При обработке больших массивов информации, что особенно актуально при проведении современных научных разработок, перед исследователем стоит серьезная задача правильной группировки исходных данных. Если данные имеют дискретный характер, то проблем, как мы видели, не возникает – необходимо просто подсчитать частотукаждого признака. Если же исследуемый признак имеет непрерывный характер (что имеет большее распространение на практике), то выбор оптимального числа интервалов группировки признака является отнюдь не тривиальной задачей.

Для группировки непрерывных случайных величин весь вариационный размах признакаразбивают на некоторое количество интервалов к.

Сгруппированным интервальным (непрерывным ) вариационным рядом называют ранжированные по значению признака интервалы (), гдеуказанные вместе с соответствующими частотами () числа наблюдений, попавших в г"-й интервал, или относительными частотами ():

Интервалы значений признака

Частота mi

Гистограмма и кумулята {огива), уже подробно рассмотренные нами, являются прекрасным средством визуализации данных, позволяющим получить первичное представление о структуре данных. Такие графики (рис. 1.15) строятся для непрерывных данных так же, как и для дискретных, только с учетом того, что непрерывные данные сплошь заполняют область своих возможных значений, принимая любые значения.

Рис. 1.15.

Поэтому столбцы на гистограмме и кумуляте должны соприкасаться, не иметь участков, куда не попадают значения признака в пределах всех возможных (т.е. гистограмма и кумулята не должны иметь "дырок" по оси абсцисс, в которые не попадают значения изучаемой переменной, как на рис. 1.16). Высота столбика соответствует частоте– числу наблюдений, попавших в данный интервал, или относительной частоте– доле наблюдений. Интервалы не должны пересекаться и имеют, как правило, одинаковую ширину.

Рис. 1.16.

Гистограмма и полигон являются аппроксимациями кривой плотности вероятности (дифференциальной функции) f(x) теоретического распределения, рассматриваемой в курсе теории вероятностей . Поэтому их построение имеет такое важное значение при первичной статистической обработке количественных непрерывных данных – по их виду можно судить о гипотетическом законе распределения.

Кумулята – кривая накопленных частот (частостей) интервального вариационного ряда. С кумулятой сопоставляется график интегральной функции распределения F(x) , также рассматриваемой в курсе теории вероятностей.

В основном понятия гистограммы и кумуляты связывают именно с непрерывными данными и их интервальными вариационными рядами, так как их графики являются эмпирическими оценками функции плотности вероятности и функции распределения соответственно.

Построение интервального вариационного ряда начинают с определения числа интервалов k. И эта задача, пожалуй, является самой сложной, важной и неоднозначной в изучаемом вопросе.

Число интервалов не должно быть слишком малым, так как при этом гистограмма получается слишком сглаженной (oversmoothed), теряет все особенности изменчивости исходных данных – на рис. 1.17 можно увидеть, как те же данные, по которым построены графики рис. 1.15, использованы для построения гистограммы с меньшим числом интервалов (левый график).

В то же время число интервалов не должно быть слишком велико – иначе мы не сможем оценить плотность распределения изучаемых данных по числовой оси: гистограмма получится недосглажепная (undersmoothed), с незаполненными интервалами, неравномерная (см. рис. 1.17, правый график).

Рис. 1.17.

Как же определить наиболее предпочтительное число интервалов?

Еще в 1926 г. Герберт Стерджес (Herbert Sturges) предложил формулу для вычисления количества интервалов, на которые необходимо разбить исходное множество значений изучаемого признака . Эта формула поистине стала сверхпопулярной – большинство статистических учебников предлагают именно ее, по умолчанию ее используют и множество статистических пакетов. Насколько это оправдано и во всех ли случаях – является весьма серьезным вопросом.

Итак, на чем основана формула Стерджеса?

Рассмотрим биномиальное распределение }

Поделиться: