Принцип работы тепловых насосов отопления дома. Как сделать тепловой насос для отопления дома своими руками: принцип работы и схемы сборки Тепловые насосы и их принцип действия

Простым языком, принцип работы теплового насоса близок к бытовому холодильнику — берет тепловую энергию у источника тепла и передает его в систему отопления. Источником тепла для насоса может быть грунт, скальная порода, атмосферный воздух, вода из разных источников (реки, ручьи, грунтовки, озера).

Типы тепловых насосов классифицируют по источнику тепла:

  • воздух-воздух;
  • вода-воздух;
  • вода-вода;
  • грунт-вода (земля-вода);
  • лед-вода (редко).

Обогрев, кондиционирование и ГВС — все это может обеспечить тепловой насос. Для обеспечения всего этого ему не нужно горючее. Электричество, идущее на поддержание работы насоса, составляет примерно 1/4 от потребления другими видами отопления.

Компоненты системы отопления на тепловом насосе

Компрессор — сердце системы отопления на тепловом насосе. Он концентрирует рассеянное низкопотенциальное тепло, повышая его температуру за счет сжатия, и передает теплоносителю в систему. При этом электроэнергия тратится исключительно на сжатие и перенос тепловой энергии, а не на нагрев теплоносителя — воды или воздуха. По усредненным подсчетам, на 10 кВт тепла тратится до 2,5 кВт электричества.

Накопительный бак для горячей воды (для инверторных систем). Аккумулирующий бак накапливает воду, выравнивающую тепловые нагрузки отопительной системы и ГВС.

Хладагент . Так называемое рабочее тело, находящееся под низким давлением и кипящее при низких температурах, поглотитель низкопотенциальной энергии источника тепла. Это газ, циркулирующий в системе (фреон, аммиак).

Испаритель , обеспечивающий отбор и передачу тепловой энергии насосу из низкотемпературного источника.

Конденсатор , передающий тепло от хладагента воде или воздуху в системе.
Терморегулятор.

Первичный и вторичный грунтовый контур . Передающая тепло от источника к насосу и от насоса в домашнее отопление циркуляционная система. Первичный контур состоит из: испарителя, насоса, труб. Вторичный контур включает в себя: конденсатор, насос, трубопровод.

Тепловой насос воздух-вода 5-28 кВт

Тепловой насос воздух-вода на отопление и ГВС 12-20 кВт

Принцип работы теплового насоса заключается в поглощении и последующем выделении тепловой энергии в процессе испарения и конденсации жидкости а так же в смене давления и последующем изменении температуры конденсации и испарения.

Тепловой насос изменяет движение тепла — заставляет двигаться в обратном направлении. То есть ТН тот же гидравлический, перекачивающий жидкости снизу-вверх, вопреки природному движению сверху-вниз.

Хладагент подвергается сжатию в компрессоре и передается конденсатору. Высокое давление и температура конденсирует газ (фреон чеще всего), тепло передается теплоносителю в систему. Процесс повторяется, когда хладагент проходит испаритель снова — давление снижается и запускается процесс низкотемпературного кипения.

В зависимости от источника низкопотенциального тепла, каждый вид насосов имеет свои нюансы.

Особенности тепловых насосов в зависимости от источника тепла

Тепловой насос воздух-вода зависит от температуры воздуха, которая не должна опускаться ниже +5°С за бортом, а заявленный коефициент преобразования теплоты СОР 3,5-6 реально получить только при 10°С и выше. Насосы такого типа инсталлируются на участке, в самом продуваем месте, устанавливают и на крышах. Примерно то же можно сказать о насосах «воздух-воздух».

Тип насоса «грунт-вода»

Насос «грунт-вода» или геотермальный тепловой насос совершает забор тепловой энергии из грунта. Земля имеет температуру от 4°С до 12°С, всегда стабильных на глубине 1,2 -1,5 м.


Размещать горизонтальный коллектор нужно на участке, площадь зависит от температур грунта и размера отапливаемой площади, над системой кроме травки ничего сажать и размещать нельзя. Есть вариант вертикального коллектора со скважиной до 150 м. Промежуточный теплоноситель церкулирует по трубам, проложенным в грунте и прогревается до 4°С, охлаждая почву. В свою очередь, грунт должен восполнить потери тепла, а это значит, что для эффективной работы ТН нужны сотни метров труб по участку.


Тепловой насос «вода-вода»

Тепловой насос «вода-вода» работает на низкопотенциальном тепле рек, ручьев, сточных водах и грунтовках. Вода более теплоемкая, нежели воздух, но в охлаждении грунтовых вод есть свои нюансы — нельзя охлаждать до замерзания, вода должна свободно дренировать в грунт.


Нужно иметь стопроцентную уверенность, что за сутки получится беспрепятственно пропустить сквозь себя десятки тонн воды. Эта проблема часто решается сбросом охлажденной воды в ближайший водоем, с тем лишь условием, что водоем у вас за забором, иначе такое отопление выливается в миллионы. Если до проточного водоема десяток метров, то отопление тепловым насосом «вода-вода» будет самым эффективным.


Тепловой насос «лед-вода»

Тепловой насос «лед-вода» достаточно экзотический тип насосов, требующий доработки теплообменника — насос воздух-вода переделывается под охлаждение воды и отводит лед.

За отопительный сезон накапливается около 250 тонн льда, которые можно складировать (такой обьем льда может наполнить средний бассейн). Этот тип тепловых насосов хорош для наших зим. 330 Кдж/кг — столько тепла выделяет вода в процессе замерзания. В свою очередь, остывание воды на 1°С дает в 80 раз меньше тепла. Норма отопления 36000 Кдж/ч получается из заморозки 120 литров воды. На этом тепле можно построить систему отопления тепловым насосом лед-вода. Пока информации по данному типу насосов очень мало, буду искать.

Плюсы и минусы тепловых насосов

Не хочется мне тут разглагольствовать по поводу «зеленой» энергии и экологичности, так как цена на всю систему оказывается заоблачной и тут в последнюю очередь задумываешься об озоновом слое. Если опустить стоимость системы отопления на тепловом насосе, то плюсы такие:

  1. Безопасное отопление . Сужу по себе — когда мой газовый котел врубает горелку с хлопком, на голове каждые 15 минут появляется седой волос. Тепловой насос не использует открытого пламени, горючего топлива. Никаких запасов дров и угля.
    КПД теплового насоса около 400-500% (берет 1 кВт электроэнергии, тратит 5).
  2. «Чистое» отопление без отходов сгорания, выхлопа, запаха.
  3. Тихая работа при «правильном» компрессоре.

Жирный минус тепловых насосов — цена на всю систему в целом и редко встречающиеся идеальные условия для эффективной работы насоса.

Окупаемость системы отопления на основе теплового насоса может быть и 5 лет, а может и 35, и вторая цифра, к сожалению, более реальна. Это очень дорогая система на этапе внедрения и очень трудоемкая.


Кто бы что вам не рассказывал, нынче развелось кулибиных, расчетами на тепловой насос должен заниматься только специалист теплотехник, с выездом на объект.

Человечество с древнейших времен «привыкло» использовать доступные природные энергоносители, которые попросту сжигаются для получения тепла или для преобразования в иные виды энергии. Научились люди применять и скрытый потенциал водных потоков – начали от водяных мельниц и дошли до мощных гидроэлектростанций. Однако то, что казалось вполне достаточным еще сотню лет назад, сегодня уже никак не может удовлетворить потребности растущего населения Земли.

Во-первых, природные «кладовые » все же не бездонны, и добыча энергоносителей с каждым годом становится все сложнее, перебираясь в труднодоступные регионы или даже на морские шельфы. Во-вторых, сжигание природного сырья всегда сопряжено с выбросами продуктов сгорания в атмосферу, что при нынешних громадных объемах таких выбросов уже поставило планету на грань экологического бедствия. Энергии гидроэлектростанций недостаточно, да и нарушение гидрологического баланса рек также влечет массу негативных последствий. Ядерная энергетика, на которую некогда смотрели, как на «панацею», после целого ряда резонансных техногенных катастроф вызывает массу вопросов, а во многих регионах планеты строительство АЭС просто запрещено законодательно.

Однако, есть и другие, практически неиссякаемые источники энергии, которые стали широко использоваться сравнительно недавно. Современные технологии позволили весьма эффективно применять для получения электричества или тепла энергию ветра, солнечного света, океанских приливов и т.п . Одним из альтернативных источников является и тепловая энергия земных недр, водоемов , атмосферы. Именно на использовании таких источников основана работа тепловых насосов. Подобное оборудования для нас пока еще входит в разряд «экзотических новинок», а в то же время именно таким способом отапливают свое жилье очень многие жители Европы – например, в Швейцарии или странах Скандинавии количество домов с подобными системами перевалило за 50%. Постепенно начинает такой вид получения тепла практиковаться и на российских просторах, хотя цены на приобретения высокотехнологичного комплекта оборудования пока выглядят очень пугающими. Но, как всегда, находятся мастера-энтузиасты, которые проявляют свои творческие способности и собирают тепловые насосы своими руками.

Публикация нацелена на то, чтобы читатель смог поближе рассмотреть принцип действия и базовое устройство тепловых насосов, узнать о тих преимуществах и недостатках. Кроме того, будет рассказано об успешных опытах создания действующих установок своими силами.

Принцип действия теплового насоса

Не все об этом задумывались, но вокруг нас – немало источников тепла, которые «работают» круглогодично и круглосуточно. Для примера – даже в самые сильные холода температура подо льдом замерзшего водоема все равно остается положительной. Та же картина и при углублении в толщу грунта – ниже границы его промерзания температура практически всегда стабильна и примерно равна среднегодовой, характерной для данного региона. Немалый тепловой потенциал несет в себе и воздух.

Возможно, кого-то смутят совсем, казалось бы, невысокие температуры воды, грунта или воздуха. Да, они относятся к низкопотенциальным источникам энергии, но их главный «козырь» — стабильность, а современные технологии, основанные на законах теплофизики, позволяют даже незначительную разницу преобразовывать в необходимый нагрев. Да и, согласитесь, когда на улице зимой стоит мороз в 20 градусов, а ниже уровня промерзания грунт имеет 5 ÷ 7 градусов, то такой амплитудный перепад — уже весьма приличен.

Именно это свойство непрерывности поступления низкопотенциальной энергии заложено в схему теплового насоса. По сути, этот агрегат является устройством, который «перекачивает» и «концертирует» тепло, забираемое из неиссякаемого источника.

Можно провести некую аналогию со всем знакомым холодильником. Продукты, которые в него укладываются для охлаждения и хранения и попадающий в камеру при открытии дверцы воздух – тоже имеют не слишком высокую температуру. Но если прикоснуться к теплообменной решетке конденсатора на задней стенке холодильника, то она или очень теплая , или даже горячая.

Прообраз теплового насоса — знакомый всем холодильник, решетка конденсатора которого при работе нагревается.

Так почему бы не использовать этот принцип для нагрева теплоносителя?Конечно с холодильником аналогия не прямая – там нет стабильного внешнего источника тепла, и по большей мере тратится электроэнергия. Но в случае с тепловым насосом такой источник можно найти (организовать), и тогда это получится «холодильник наоборот » — основная направленность агрегата будет именно на получение тепла.

По какому принципу работает ?

Он представляет собой систему из трех контуров с циркулирующими по ним теплоносителями.


  • В самом корпусе теплового насоса (поз . 1) размещены два теплообменника (поз . 4 и 8), компрессор (поз . 7), контур циркуляции хладагента (поз . 5), приборы регулировки и управления.
  • Первый контур (поз. 1) с собственным циркуляционным насосом (поз. 2) размещен (погружен ) в источнике низкопотенциального тепла (об их устройстве будет сказано ниже). Получая тепловую энергию от внешнего бесперебойного источника (показано широкой розовой стрелкой), подогреваясь всего на несколько градусов (обычно, при использовании зондов или коллекторов в грунте или в воде – до 4 ÷ 6 ° С ), циркулирующий теплоноситель попадает в теплообменник-испаритель (поз. 4). Здесь происходит первичная передача тепла, полученного извне.
  • Хладагент, используемый во внутреннем контуре насоса (поз. 5), имеет крайне низкую температуру кипения. Обычно здесь применяется один из современных, безопасных для окружающей среды фреонов, либо двуокись углерода (по сути – сжиженный углекислый газ). На вход в испаритель (поз. 6) он подходит в жидком состоянии, при пониженном давлении — это обеспечивает регулируемый дроссель (поз. 10). Особая форма входного отверстия капиллярного типа и форма испарителя способствуют практически мгновенному переходу хладагента в газообразное состояние. По законам физики, испарение всегда сопровождается резким охлаждением и поглощением окружающего тепла. Так как этот участок внутреннего контура расположен в одном теплообменнике с первым контуром, то фреон отбирает тепловую энергию от теплоносителя, одновременно охлаждая его (широкая оранжевая стрелка). Охлажденные теплоноситель продолжает циркуляцию, и вновь набирает тепловую энергию из внешнего источника.
  • Хладагент уже в газообразном состоянии, перенося переданное ему тепло, попадает в компрессор (поз. 7), где под воздействием сжатия его температура резко поднимается. Далее, он попадает в следующий теплообменник (поз. 8), в котором расположен конденсатор и трубы третьего контура теплового насоса. (поз. 11).
  • Здесь происходит полностью противоположный процесс – хладагент конденсируется, переходя в жидкое состояние, при этом отдавая свой нагрев теплоносителю третьего контура. Далее, в жидком состоянии при высоком давлении он проходит через дроссель, где давление снижается, и цикл физических превращений агрегатного состояния хладагента повторяется вновь и вновь.
  • Теперь переходит к третьему контуру (поз. 11) теплового насоса. Ему через теплообменник (поз. 8) предается тепловая энергия от разогретого компрессией хладагента (широкая красная стрелка). Этот контур имеет собственные циркуляционный насос (поз. 12), которые обеспечивает движение теплоносителя по трубам отопления. Однако намного разумнее использовать еще и аккумулирующую, тщательно изолированную буферную емкость (поз. 13), в которой будет накапливаться переданное тепло. Накопленный запас тепловой энергии расходуется уже для нужд отопления и горячего водоснабжения, расходуясь постепенно, по мере надобности. Подобная мера позволяет подстраховаться на случай перебоев в электропитании или использовать более дешевый ночной тариф на электроэнергию, необходимую для работы теплового насоса.

Если устанавливается буферный аккумулирующий бак, то к нему уже подводится контур отопления (поз . 14) с собственным циркуляционным насосом (поз . 15), обеспечивающим перемещение теплоносителя по трубам системы (поз . 16). Как уже говорилось, может быть и второй контур, который обеспечивает подачу горячей воды для бытовых нужд.

Тепловой насос не может работать без электропитания – оно требуется для функционирования компрессора (широкая зеленая стрелка), да и циркуляционные насосы во внешних контурах также потребляют электроэнергию. Однако, как уверяют разработчики и производители тепловых насосов, потребление электричества несопоставимо с получаемым «объемом » тепловой энергии. Так, при правильной сборке и оптимальных условиях эксплуатации, часто ведется разговор о 300 и более процентах КПД, то есть при одно затраченном киловатте электричества тепловой насос может дать «на-гора» 4 киловатта тепловой энергии.

На самом деле подобное утверждение о КПД несколько некорректно. Законы физики никто не отменял, и КПД выше 100% — такая же утопия, как и « perpetummobile » — вечный двигатель. Речь в данном случае идет о рациональном использовании электричества в целях «перекачки» и преобразования энергии, поступающей из неиссякаемого внешнего источника. Здесь уместнее использовать понятие СОР (от английского «coefficient of performance» ) что в русском языке чаще называется «коэффициентом преобразования теплоты». В этом случае, действительно, могут получиться значения, превышающие единицу:

CO Р = Q п / А , где:

CO Р – коэффициент пр еобразования теплоты;

Q п – количество тепловой энергии, полученное потребителем;

А – работа, выполненная компрессорной установкой.


Существует еще один нюанс, про который часто просто забывают – определенного расхода энергии для нормального функционирования насоса требует не только компрессор, но и циркуляционные насосы во внешних контурах. Потребляемая мощность у них, конечно, значительно меньше, но, тем не менее , ее тоже можно учесть, а этого часто в маркетинговых целях просто не делается.

Полученное суммарно количество тепловой энергии может расходоваться:


1 – оптимальное решение – это система теплых водяных полов. Как правило, тепловые насосы дают «подъем » температуры до уровня примерно в 50 ÷ 60 ° С – это достаточно для подогрева пола.

2 – горячее водоснабжение дома. Обычно в системах ГВС температура на таком уровне и поддерживается – около 45 ÷ 55 °С .

3 – а вот для обычных радиаторов такого нагрева будет явно недостаточно. Выход – увеличивать количество секций или же использовать специальные низкотемпературные радиаторы. Помогут решить вопрос и отопительные приборы конвекционного типа.

4 – одно из важнейших достоинств тепловых насосов – возможность их переключения на «противоположный» режим работы. В летнее время такой агрегат может выполнять функцию кондиционирования воздуха – отбирая тепло из помещений и перенося его в грунт или водоем .

Источники низкопотенциальной энергии

Какие же источники низкопотенциальной энергии способны использовать тепловые насосы? В этой роли могут выступать горные породы, грунт на различной глубине, вода из естественных водоемов , или подземных водоносных горизонтов, атмосферный воздух или теплые воздушные потоки, отводимые из зданий или от промышленных технологических комплексов.

А. Использование тепловой энергии грунтов

Как уже говорилась, ниже уровня промерзания почвы, характерного для данного региона, температура грунта отличается стабильностью в течение всего года. Это и используется для работы тепловых насосов по схеме «грунт – вода ».


Принципиальная схема отбора энергии «грунт — вода»

Для создания такой системы готовятся специальные поверхностные тепловые поля, на которых снимаются верхние слои грунта на глубину порядка 1,2 ÷ 1, 5 метров . В них укладывают контуры, выполненные из пластиковых или металлопластиковых труб диаметром, как правило, 40 мм. Эффективность съема тепловой энергии зависит от местных климатических условий и от общей протяженности создаваемого контура.

Ориентировочно, для средней полосы России, можно оперировать следующими соотношениями:

  • Сухие песчаные грунты – 10 Вт энергии с одного погонного метра трубы.
  • Сухие глинистые грунты – 20 Вт/м.
  • Влажные глинистые грунты – 25 Вт/м.
  • Глинистая порода с высоким расположением грунтовых вод – 35 Вт/м.

При всей кажущейся простоте такого теплообмена, способ отнюдь не всегда является оптимальным решением. Дело в том, что он предполагает очень значительные объемы земляных работ. То, что выглядит простым на схеме – значительно сложнее в практическом исполнении. Посудите сами – для того, чтобы «снять» с подземного контура даже всего 10 кВт т епловой энергии на глинистом грунте потребуется порядка 400 метров трубы. Если еще учитывать обязательное правило, что между витками контура должен быть интервал никак не меньше 1, 2 метров , то для укладки будет необходим участок площадью 4 сотки (20 × 20 метров).


Закладка поля для отбора тепла из грунта — чрезвычайно масштабная и трудоемкая задача

Во-первых, далеко не у всех есть возможность выделить такую территорию. Во-вторых, на этом участке полностью исключаются какие-либо постройки, так как велика вероятность повреждения контура. И в-третьих – отбор тепла из грунта, особенно при некачественно проведенных расчетах , может не пройти бесследно. Не исключен эффект переохлаждения участка, когда летнее тепло не сможет полностью восстановить температурный баланс на глубине залегания контура. Это может негативно сказаться на биологическом балансе в поверхностных слоях почвы, и в итоге некоторые растения просто не будут расти на переохлаждённом участке – такой своеобразный локальный эффект «ледникового периода».

Б. Тепловая энергия из скважин

Даже небольшой размер участка не будет препятствием для организации забота тепловой энергии из пробуренной скважины.


В качестве источника низкопотенциального тепла — глубокая скважина

Температура грунта с увеличение глубины становится только стабильнее, а на глубинах свыше 15 20 метров прочно стоит на 10-градусной отметке, увеличиваясь на два ÷ три градуса на каждые 100 м погружения. Причём , эта величина – абсолютно не зависит от времени года или капризов погоды, что делает именно скважину самым стабильным и предсказуемым источником тепла.


В скважины опускается зонд, представляющий собой U-образную петлю из пластиковых (металлопластиковых) труб с циркулирующим по ним теплоносителем. Чаще всего делается несколько скважин глубиной от 40 ÷ 50 и до 150 метров, не ближе 6 м одна от другой, которые связываются или последовательно, или с подключением к общему коллектору. Теплоотдача грунта при таком расположении труб – значительно выше:

  • При сухих осадочных породах – 20 Вт/м.
  • Каменистые грунтовые слои или насыщенные водой осадочные породы – 50 Вт/м.
  • Твердые горные породы, обладающие высокой теплопроводностью – 70 Вт/м.
  • Если повезло, и попался подземный водоносный горизонт – порядка 80 Вт/м.

При недостаточности места или при сложностях в глубоком бурении из-за особенностей грунта может выполняться несколько наклонных скважин лучами из одной точки.

Кстати, в том случае, если скважина приходится на водоносный горизонт со стабильным дебетом, то иногда применяют открытый контур первичного теплообмена. При этом вода закачивается насосом с глубины, участвует в теплообмене, а затем, охлажденная , сбрасывается во вторую скважину того же горизонта, на расположенную на определенном расстоянии от первой (это вычисляется при проектировании системы). Одновременно может быть организован и водозабор для бытовых нужд.


Основной недостаток скважинного способа отбора тепла – высокая стоимость бурильных работ, которые провести собственными силами, не располагая соответствующим оборудованием, очень сложно или попросту невозможно. Кроме того, бурение скважин часто требует разрешительных документов от органов природонадзора . Кстати, и использование прямого теплообмена с обратным сбросом воды в скважину тоже может оказаться запрещенным .

Можно ли самостоятельно пробурить скважину?

Безусловно, это чрезвычайно сложная задача, однако есть технологии, позволяющие при определённых условиях выполнить ее самостоятельно.

О том, как можно – в специальной публикации нашего портала.

В. Использование водоемов в качестве источников тепла

Расположенный поблизости от дома водоем достаточной глубины вполне может стать неплохим источником тепловой энергии. Вода даже зимнее время под верхней коркой льда остается в жидком состоянии, и ее температура выше нуля – это и нужно тепловому насосу.


Ориентировочная теплоотдача с контура, погруженного в воду – 30 кВт/м. Значит, чтобы получить отдачу в 10 кВт, потребуется контур порядка 350 м .


Такие контуры-коллекторы монтируются на суше из пластиковых труб. Затем они перемещаются в водоем и погружаются на дно, на глубину не менее 2 метров, для чего привязываются грузы из расчета 5 кг на 1 погонный метр тр убы.


Затем выполняется термоизолированная прокладка труб к дому и подключение их к теплообменнику теплового насоса.

Однако, не следует думать, что любой водоем в полной мере подойдет для подобных целей – опять же, понадобятся весьма сложные теплотехнические расчеты . Например, небольшой и недостаточно глубокий пруд или мелкая тихая речушка мало того, что могут не справиться с задачей бесперебойной подачи низкопотенциальной энергии – их можно попросту переморозить вообще до дна, убив тем самым всех обитателей водоема .

Достоинства водяных источников тепла – нет необходимости в буровых работах, до минимума сводятся и земляные – только выкапывание траншей к дому для укладки труб. А как недостаток можно отметить малую доступность для большинства домовладельцев просто из-за отсутствия водоемов в разумной близости от жилья.

Кстати, в целях теплообмена нередко используют стоки – у них даже в холода достаточно стабилизированная положительная температура.

Г. Забор тепла из воздуха

Тепло для обогрева жилья или для горячего водоснабжения можно брать буквально из воздуха. На таком принципе работают тепловые насосы «воздух – вода» или «воздух воздух ».


По большому счету – это тот же кондиционер, только переключенный на режим «зима». Эффективность такой системы обогрева очень сильно зависит и от климатических условий региона, и от капризов погоды. Современные установки хотя и рассчитаны для работы даже при очень низких температурах (до – 25, а некоторые – даже до – 40 ° С ), но коэффициент пр еобразования энергии при этом резко падает, рентабельность и целесообразность подобного подхода сразу начинают вызывать кучу вопросов.

Но зато такой тепловой насос вообще не требует никаких трудоемких операций – чаще всего его первичный теплообменный блок устанавливается или на стене (крыше) здания, либо в непосредственной близости от него. Его, кстати, практически нельзя отличить от внешнего блока сплит-системы кондиционирования.


Такие тепловые насосы часто используют в качестве дополнительных источников тепловой энергии для отопления, а в летнее время – в роли теплогенератора для горячего водоснабжения.

Применение подобных тепловых насосов в полне оправдано для рекуперации – использования вторичного тепла, например, на выходах вентиляционных шахт (каналов). Так установка получает достаточно стабильный и высокотемпературный источник энергии – это широко применяется на промышленных предприятиях, где постоянно имеются источники вторичного тепла для его утилизации.

В системах «воздух-воздух» и «воздух – вода» первичного контура теплообмена вообще нет. Вентиляторы создают воздушный поток, который обдувает непосредственно трубки испарителя с циркулирующим по ним хладагентом.

Кстати, существует целая линейка тепловых насосов DХ – типа (от английского «direct exchange» , что означает «прямой обмен»). В них тоже , по сути, отсутствует первичный контур. Теплообмен с источником низкопотенциального тепла (в скважинах или в слое грунта) проходит сразу в медных трубах, заполненных х ладагентом. Это, с одной стороны , дороже и сложнее в исполнении, но зато позволяет существенно уменьшить и глубину скважин (достаточно одной 30-метровой вертикальной или нескольких наклонных до 15 м ), и общую площадь теплообменного горизонтального поля, если оно расположено под верхним слоем грунта. Соответственно, можно говорить и о большем коэффициенте преобразования, и в целом – эффективности теплового насоса. Но вот только и медные теплообменные трубы намного дороже пластиковых и сложнее в монтаже, и стоимость хладагента значительно выше, чем обычного теплоносителя-антифриза.

А как устроен кондиционер, и можно ли его смонтировать самостоятельно?

Уже говорилось, что по базовому принципу действия кондиционер и тепловой насос – практически «близнецы», но в «зеркальном отображении».

Подробнее об устройстве и основных правилах – в специальной публикации портала.

Видео: полезная информация по теории и практике использования тепловых насосов

Общие достоинства и недостатки тепловых насосов

Итак, можно подвести определенную черту в рассмотрении тепловых насосов, акцентировав в нимание на их основных, мнимых и действительных, достоинствах и недостатках.

А. Высокая экономичность и общая рентабельность такого типа отопления.

Об этом уже упоминалось выше – в продуманной и правильно смонтированной системе, при оптимальных условиях эксплуатации, можно рассчитывать на получение 4 кВт т епловой энергии взамен потраченного 1 кВт – электрической.

Все это будет справедливым лишь в том случае, если жилье получило самое высококачественное утепление. Это, безусловно, касается любых систем отопления, просто эти «магические цифры» в 300% в большей мере показывают важность надежной термоизоляции.

По регулярным расходам на потребляемые энергоресурсы тепловые насосы стоят на первом месте в плане экономичности, несколько опережая даже дешевый сетевой газ. При этом следует учесть и то, что отпадает необходимость подвоза и складирования топливных запасов— если речь идет о колах на твердом или жидком топливе.

Б. Тепловой насос может стать высокоэкономичным основным источником отопления и горячего водоснабжения.

Этот вопрос также уже затрагивался. Если в доме в качестве основного источника обогрева в помещениях используются , то тепловой насос соответствующей мощности такую нагрузку должен «потянуть». Для большинства же привычных радиаторов температура в 50 ÷ 55 градусов будет явно недостаточна.

Особо стоит упомянуть насосы, отбирающие тепло из воздуха. Они – крайне чувствительны к текущим погодным условиям. Хотя производители заявляют о возможности работы при — 25 и даже -40 ° С , эффективность резко снижается, и ни о каких 300% уже речи идти не может.


Разумное решение – создавать комбинированную систему отопления (бивалентную ). Пока хватает мощности ТН , он выступает основным источником тепла, при недостаточности мощности при наступлении настоящих холодов – на подмогу приходят электрический нагрев, жидко— или твердотопливный котел , солнечный коллектор и т.п . Газовое оборудование в этом случае не рассматривается – если есть возможность применять для отопления сетевой газ, то потребность в тепловом насосе выглядит весьма сомнительно, по крайней мере, при нынешнем уровне цен на энергоносители.

В. Система отопления с тепловым насосом не требует дымохода. Работает она практически бесшумно.

Действительно, сложностей с обустройством дымохода у хозяев не возникнет. Что же касается тишины работы, то как и у любой другой бытовой техники с теми или иными приводами, шумовой фон все равно присутствует — от работы компрессора, циркуляционных насосов. Другой вопрос, что в современных моделях этот уровень шумности при правильной отладке агрегата – весьма невелик и не причиняет беспокойства жильцам. Кроме того, наверное, мало кому придет в голову устанавливать подобное оборудование в жилых комнатах.

Г. Полная экологичность системы – полностью отсутствуют какие-либо выбросы в атмосферу, нет никакой угрозы жильцам дома.

Все верно , особенно в отношении моделей, в которых в качестве хладагента применяется современный, безвредный для озонового слоя фреон (например, R-410А ).


Можно также сразу отметить пожаро — и взрывобезопасность такой системы – нет легковоспламеняющихся или горючих веществ, исключается скопление их взрывоопасных концентраций.

Д. Современные тепловые насосы являются универсальными климатическими установками, способными работать и на отопление, и на кондиционирование – в летнее время.

Это очень важное преимущество, которое, действительно, дает хозяевам массу дополнительных удобств.

Е. Работа теплового насоса полностью контролируется автоматикой, и не требует вмешательства пользователя. Такая система, в отличие от других, не нуждается в регулярном обслуживании и профилактике.


С первым утверждением можно полностью согласиться, однако, не забыв упомянуть и то, что большинство современных отопительных газовых или электрических установок также полностью автоматизированы, то есть таким достоинством обладают не только тепловые насосы.

А вот по второму вопросу можно вступить в дискуссию. Наверное, ни один из промышленных или бытовых отопительных агрегатов не может обойтись без регулярных проверок и профилактических работ. Даже если справедливо предположить, что во внутренний контур с хладагентом и в автоматику самостоятельно лезть не стоит, то внешние контуры с антифризом или иным теплоносителем определенного участия все же потребуют. Здесь и регулярная чистка (особенно в воздушных системах), и контроль состава и уровня теплоносителя, и ревизия работы циркуляционных насосов, и проверка состояния труб на целостность и наличие подтеканий на фитингах, и многое другое – одним словом, то, без чего не обходится ни одна система отопления. Одним словом, утверждение о полной ненадобности обслуживания выглядит, по меньшей мере , голословно.

Ж. Быстрая окупаемость системы отопления с тепловым насосом.

Этот вопрос – настолько неоднозначный, что на нем следует остановиться особо.

Некоторые компании, занимающиеся реализацией подобного оборудования, обещают своим потенциальным клиентам очень быстрый возврат вложенных в реализацию проекта средств. Они приводят выкладки в таблицах, по которым, действительно, можно создать мнение, что тепловой насос – единственное приемлемое решение, если нет возможности протянуть к дому газовую магистраль.

Вот один из таких образцов:

Виды топлива Природный газ (метан) Дрова колотые берёзовые Эл. энергия по единому тарифу Дизтопливо Тепловой насос (ночной тариф)
Ед. поставки топлива м ³ 3 м ³ кВт × ч литр кВт × ч
Стоимость топл. с доставкой, руб 5.95 6000 3.61 36.75 0.98
Калорийность топлива 38.2 4050 1 36 1
Ед. измерения калорийности МДж/м ³ кВт × ч кВт × ч МДж/литр кВт × ч
КПД котла,% или COP 92 65 99 85 450
Стоимость топлива, руб/МДж 0.17 0.41 1.01 1.19 0,06
Стоимость топлива, руб/кВт*ч 0.61 1.48 3.65 4.29 0.22
Стоимость топлива, руб/ГКал 708 1722 4238 4989 253
Стоимость топлива в год, руб 24350 59257 145859 171721 8711
Срок эксплуатации оборудования, лет 10 10 10 10 15
Примерная стоимость оборудования, руб 50000 70000 40000 100000 320000
Стоимость монтажа, руб 70000 30000 30000 30000 80000
Стоимость подключения сетей (техусловия, оборудование и монтаж), руб 120000 0 650 0 0
Первоночальные инвестиции, руб (приблизительно) 240000 100000 70650 130000 400000
Эксплуатационные затраты, руб/год 1000 1000 0 5000 0
Виды эксплуатационных работ техобслуживание, чистка камеры чистка камеры, дымоходов Замена ТЭНов чистка камеры, форсунок, замена фильтров нет
Итого расходы за весь период эксплуатации (с затратами на топливо), руб 493502 702572 1529236 1897201 530667
Итого относительная стоимость 1 года эксплуатации (топливо, аммортизация, обслуживание и т.д) 49350 70257 152924 189720 35378

Да, итоговая строка действительно впечатляет, но все ли тут обстоит «гладко»?

Первое, что бросится в глаза внимательному читателю – тариф на электроэнергию для электрического обогрева взят общий, а на тепловой насос, отчего-то, льготный ночной. Видимо, для того, чтобы итоговая разница была более наглядной.

Далее. Стоимость оборудования теплового насоса показана не совсем корректно. Если внимательнее ознакомиться с предложениями в интернете, то цены на установки мощностью около 7 ÷ 10 кВт, которые могут использоваться в целях отопления, начинаются от 300 – 350 тысяч рублей (воздушные тепловые насосы и маломощные установки, используемые лишь для горячего водоснабжения, стоят несколько поменьше ).

Казалось бы, все правильно, но «дьявол кроется в деталях» Это – только лишь стоимость самого аппаратного блока, который без периферийных устройств, контуров, зондов и т.п . – бесполезен. Цена только одного коллектора (без труб) даст еще не менее 12 ÷ 15 тысяч, скважинный зонд ст оит не меньше. А если еще прибавить стоимость труб, фитингов, запорно-арматурных элементов, достаточно большого количества теплоносителя – общая сумма вырастает стремительно.


Трубы, коллекторы, запорная арматура — тоже достаточно «весомая» статья общих расходов

Но и это – еще не все. Уже упоминалось, что система отопления на основе теплового насоса, как, наверное, ни одна другая, нуждается в сложных специализированных расчетах . При проектировании учитывается очень много факторов: общая площадь и объемы самого здания, степень его утепленности и расчет тепловых потерь, обеспеченность достаточным по мощности источником электроснабжения, наличие необходимого участка территории (близлежащего водоема ) для размещения теплообменных горизонтальных контуров или бурения скважин, тип и состояние грунтов, расположение водоносных слоев и много другое. Безусловно, и изыскательские, и проектировочные работы также потребуют и времени, и соответствующей оплаты специалистам.

Установка же оборудования «наобум», без правильного проектирования, чревата резким снижением эффективности работы системы, а порой – даже локальными «экологическими катастрофами» в виде недопустимого переохлаждения грунта, колодцев или скважин, водоемов .

Следующее – монтаж оборудования и создание теплообменных полей или скважин. Уже упоминалось о масштабах земляных работ, глубине бурения. Для заполнения скважин после установки зондов требуется специальный бетонный раствор с высокой степенью теплопроводности. Плюс к этому – коммутация контуров, прокладка магистралей к дому и т.п . – все это еще один немалый «пласт» материальных затрат. Сюда же можно отнести приобретение и монтаж аккумулирующей емкости с необходимой автоматикой управления, переделку системы отопления под теплые полы или установку специальных теплообменных приборов.

Одним словом, затраты очень внушительные, и, наверное, именно это пока держит системы отопления от тепловых насосов в разряде «экзотики», недоступной подавляющему большинству владельцев частных домов.

А как же с высочайшей их популярностью и массовостью применения в других странах? Дело в том, что там работают правительственные программы стимуляции населения к использованию альтернативных источников энергоснабжения. Потребители, которые изъявили желание перейти на подобные виды отопления, имеют право на получение государственных субсидий, во многом покрывающих первоначальные затраты на проектирование и монтаж оборудования. Да и уровень доходов у работающих граждан, если честно, там несколько повыше , нежели в наших краях.


Для европейских городов и поселков это достаточно привычная картина — теплообменник теплового насоса около дома

Резюме – к утверждениям о быстрой окупаемости подобного проекта нужно относиться с определенной долей осторожности. Прежде чем браться за столь масштабный и ответственный комплекс мероприятий, следует т щательно просчитать и взвесить всю «бухгалтерию» до мелочей, оценить степени риска, свои финансовые возможности, планируемую рентабельность и т.п . Возможно, найдутся более рациональны, приемлемые варианты – прокладка газа, установка современных , использование новых разработок в сфере электрического обогрева и т.п .

Не следует воспринимать написанное, как «негатив» в адрес тепловых насосов. Безусловно – это чрезвычайно прогрессивное направление, и у него – огромные перспективы. Речь идет лишь о том, что в подобных вопросах не следует проявлять необдуманного волюнтаризма – решения должны основываться на тщательно продуманных и всесторонне проведенных расчетах .

Цены на модельный ряд тепловых насосов

Тепловые насосы

Можно ли собрать тепловой насос с воими руками?

Общая перспективность использования «дармовых» источников тепловой энергии, в совокупности с сохраняющейся высокой ценой на оборудование, волей-неволей приводят многих домашних умельцев к вопросам самостоятельного создания подобных отопительных установок. Есть ли возможность изготовить тепловой насос с воими силами?

Безусловно, собрать такую тепловую машину, используя некоторые готовые агрегаты и нужные материалы – вполне возможно. В интернете можно найти и видеоматериалы, и статьи с успешными примерами. Правда, точных чертежей отыскать – вряд ли удастся, все обычно ограничивается рекомендациями по возможности изготовления тех или иных деталей и узлов. Впрочем, в этом есть рациональное «зерно»: как уже говорилось, тепловой насос – настолько индивидуальная система, требующая расчетов применительно к конкретным условиям, что слепо копировать чужие наработки будет вряд ли целесообразным.

Тем не менее , тому, кто все же решится на самостоятельное изготовление, следует прислушаться к некоторым технологическим рекомендациям.

Итак, «вынесем за скобки» создание внешних контуров – отопления и первичного теплообмена. Основной задачей в таком случае становится изготовление двух теплообменников, испарителя и конденсатора, связанных контуром из медной трубки с циркулирующим по нему хладагентом. Этот контур, как видно из принципиальной схемы, подключен к компрессору.


Компрессор найти несложно — новый или от разобранной на запчасти техники

Сам компрессор раздобыть не так сложно – его можно приобрести новый – в специализированном магазине. Можно поискать на хозяйственном рынке – часто продают агрегаты от разобранных на запчасти старых холодильников или кондиционеров. Вполне возможно, что компрессор обнаружится и в собственных запасах – многие рачительные хозяева даже при покупке новой бытовой техники такие вещи не выбрасывают.

Теперь – вопрос теплообменников. Здесь есть несколько различных вариантов:

А. Если есть возможности приобрести готовые пластинчатые теплообменники , запаянные в герметичный корпус, то этим решится сразу масса проблем. Такие устройства обладают отменной эффективностью теплопередачи из одного контура в другой – недаром их используют в системах отопления при подключении автономной внутриквартирной разводки к трубам центральной сети.


Удобство еще и в том, что подобные теплообменники — компактные, имеют готовые патрубки, фитинги или резьбовые соединения для подключения к обоим контурам.

Видео: изготовление теплового насоса с использованием готовых теплообменников

Б. Вариант т еплового насоса с теплообменниками из медных трубок и закрытых емкостей .

Оба теплообменника, в принципе, схожи по устройству, но емкости для них могут использоваться разные.

Для конденсатора подойдет цилиндрический бак из нержавейки емкостью около 100 литров. В нем необходимо разместить медный змеевик, выведя его концы сверху и снизу наружу и герметично запаяв места прохода по окончании сборки. Вход должен располагаться снизу, выход, соответственно – в верхней части теплообменника.

Сам змеевик навивают из медной трубки, которую можно приобрести в магазине метражом (толщина стенок – не менее 1 мм). В качестве шаблона можно взять трубу большого диаметра. Витки змеевика следует несколько разнести между собой, прикрепив, например, к алюминиевому перфорированному профилю.


Водяной контур отопления может быть подключен посредством обыкновенных водопроводных патрубков, смонтированных (вваренных, впаянных или на резьбовом соединении с уплотнением) в противоположных краях теплообменного бака. Для циркуляции воды используется само внутренне пространство теплообменника. В итоге должна получиться примерно такая конструкция:

Для испарителя такие сложности не нужны – здесь не бывает высоких температур или избыточного давления, поэтому будет достаточно объёмной пластиковой емкости . Змеевик навивается примерно так же, концы его выводятся наружу. Для циркуляции воды из первичного контура также достаточно обычных сантехнических соединений.

Испаритель также устанавливается на кронштейны рядом с конденсатором, а около них готовится площадка для монтажа компрессора с последующим его подключением к контуру.

Рекомендаций по обвязке компрессора, установке дроссельного регулировочного клапана , по диаметру и длине капиллярной трубки, необходимости регенерационного теплообменника и т.п ., даваться не будет – это должен рассчитывать и монтировать только специалист по холодильным установкам.

Следует помнить, что здесь требуются высокие навыки герметичной пайки медных трубопроводов , умение правильно проводить закачку хладагента – фреона, проводить проверку и осуществлять пробный запуск. Кроме того, работа эта – достаточно опасная, требующая соблюдения весьма специфических правил предосторожности.

В . Тепловой насос с теплообменниками из труб

Другой вариант изготовления теплообменников. Для этого понадобятся металлопластиковые и медные трубы.


Медные трубки подбираются двух диаметров – порядка 8 мм для конденсатора, и порядка 5 ÷ 6 для испарителя. Длина их соответственно 12 и 10 метров.

Металлопластиковые трубы предназначены для циркуляции по ним воды из контуров первичного теплообмена и отопления, и в их полости будут расположены медные трубки внутреннего контура теплового насоса. Соответственно, диаметр тр уб можно взять 20 и 16 мм.

Металлопластиковые трубы растягиваются в длину, так чтобы в них можно было без особых усилий ввести медные, которые должны выступать с каждой стороны примерно на 200 мм.

На каждый из концов трубы одевается и « запаковывается тройник, так, чтобы медная трубка прошла сквозь него прямо. Пространство между ней и телом тройника надежно запечатывается термостойким герметиком. Оставшийся перпендикулярный вывод тройника будет служить для подключения теплообменника к водяному контуру.


Трубы в сборе навиваются спиралями. Обязательно следует сразу предусмотреть их термоизоляцию, одев в поролоновые утеплительные «рубашки». В итоге получаются два готовых теплообменника.

Разместить их можно один над другим в импровизированном корпусе рамного типа. На этом же каркасе предусматривается и площадка для установки компрессора. А чтобы снизить передачу вибрации от него на общую конструкцию, можно компрессор крепить, например, через автомобильные сайлент-блоки .


Чтобы провести обвязку компрессора и заправку получившегося контура фреоном, опять же потребуется пригласить специалиста-холодильщика.

Можно установить такой тепловой насос на предназначенное ему место и подсоединить фитинги тройников на теплообменниках каждый к своему контуру. Останется лишь подвести питание и запустить агрегат.

Все рассмотренные самодельные тепловые насосы – вполне работоспособные конструкции. Однако, не следует полагать, что вот так просто можно полностью решить проблему дешёвого отопления дома. Здесь речь идет , скорее, о создании действующих моделей, которые требуют дальнейшей доработки, модернизации. Даже опытные в этом деле мастера, изготовившие уже не один подобный аппарат, постоянно ищут пути к совершенствованию, создавая новые «версии».

Видео: как мастер совершенствует собственноручно созданный тепловой насос

Кроме того, был рассмотрен только сам тепловой насос, а ему для нормальной работы требуется аппаратура управления, контроля, регулировки, связанная с системой отопления дома. Здесь уже не обойтись без определенных познаний в области электротехники и электроники.

Опять же, можно вернуться к проблемам расчетов – «потянет» ли самодельный тепловой насос систему отопления, так чтобы стать реальной альтернативой другим источникам тепла? Часто в этих вопросах домашним мастерам приходится «пробираться на ощупь». Однако, если базовый принцип усвоен, и первая модель успешно заработала – это уже большая победа. Можно свой пробный образец временно приспособить к обеспечению дома горячей водой для бытовых целей, а самому приниматься за проектирование более совершенного агрегата, с учетом уже наработанного опыта и исправления допущенных ошибок.

Горячее водоснабжение – от энергии солнца!

Очень практичным решением будет использование энергии солнечных лучей для обеспечения дома горячей водой. Этот источник альтернативной энергии – намного проще и дешевле в исполнении, нежели тепловой насос. Как сделать — в специальной публикации нашего портала.

Тепловые насосы становятся всё более популярными. С помощью этих устройств можно отапливать (охлаждать) дома и организовывать горячее водоснабжение, значительно экономя.

Людям, далёким от физики, достаточно сложно понять принцип действия тепловых насосов, в связи с чем в интернетах муссируется множество заблуждений, которыми пользуются недобросовестные производители и продавцы. В данной статье мы попытаемся в доступной форме объяснить принцип действия и развеять некоторые мифы, которыми успел обрасти этот замечательный агрегат.

Плюсы

Со школьной скамьи нам известно, что в обычных условиях более холодное вещество не может отдавать своё тепло более горячему, а наоборот, оно нагревается от него до тех пор, пока их температуры не сравняются. Это святая правда. Но тепловой насос создаёт такие условия, что более холодная среда начинает отдавать своё тепло более тёплой, охлаждаясь при этом ещё больше.

Простейший заезженный пример теплового насоса — холодильник. В нём тепло выкачивается из более холодной камеры в более тёплое помещение кухни. Морозилка при этом ещё больше охлаждается, а кухня ещё больше нагревается от радиатора, расположенного на задней панели холодильника.

Принцип работы большинства тепловых насосов основан на свойствах промежуточных теплоносителей (газов, чаще всего фреонов), которые используются в этих машинах. Именно фреоны и являются тем посредником, который позволяет забирать тепло у более холодного тела, отдавая его более горячему.

Наверняка вы замечали, что если быстро выпускать сжатый газ из балончика для заправки зажигалок, то он, испаряясь, охлаждает балончик, который даже в жаркую погоду может покрыться инеем. Справедливо и обратное: при сжатии газ нагревается. Памятуя об этом, вам будет совсем не сложно понять принцип действия теплового насоса, простейшая схема которого изображена на рисунке.

Компоненты теплового насоса

Простейший тепловой насос состоит из четырёх важнейших узлов:

  • испаритель;
  • конденсатор;
  • компрессор;
  • капилляр.

Компрессор сжимает фреон до жидкого состояния в конденсаторе, который при этом нагревается. Именно это тепло можно использовать в отоплении или в горячем водоснабжении, организовав простейший теплообмен между горячим конденсатором и более холодным помещением или бойлером.

Проходя через конденсатор, сжиженный фреон охлаждается, отдав тепло при теплообмене в радиаторы отопления или трубам теплого пола, и начинает конденсироваться. Проходя через капилляр в испаритель, фреон снова становится газообразным, охлаждая при этом испаритель (помните иней на балончике?).

Чтобы процесс не прекращался, нужно постоянно подводить тепло к испарителю, иначе фреон там просто перестанет испаряться, ведь температура испарителя при постоянной работе компрессора может сильно опуститься. Даже температуры минус тридцать, подводимой к испарителю, может быть достаточно для поддержания испарения, ведь температура испарения газов, используемых в тепловых насосах, гораздо ниже этого значения.

Допустим, температура испарения фреона равна минус шестьдесят градусов по Цельсию, а мы обдуваем испаритель морозным уличным воздухом, с температурой в минус тридцать — фреон, естественно, будет испаряться, забирая тепло даже у такого холодного воздуха. Таким образом и получается, что тепловой насос как бы перекачивает температуру из более холодной среды в более тёплую.

На что смотреть при покупке?

Такой эффект порождает множество мифов, которыми пользуются недобросовестные «продаваны», чтобы лучше продавать свою продукцию.

Самый распространённый миф — это утверждение, что КПД тепловых насосов превышает единицу. Понятно, что это утверждение — чистый бред. На самом деле КПД тепловых машин не может быть больше единицы, и даже у современных тепловых насосов он достаточно мал — меньше, чем у самого дешёвого масляного обогревателя. Люди просто часто путают КПД и так называемый COP (КОП).

КОП — это скорее экономический коэффициент, чем физический. Он показывает соотношение платной электроэнергии для перекачки бесплатного тепла с улицы к величине тепла, поступающего в помещение. Т.е. КОП 5 — это упрощенно означает, что для перекачки 5кВт халявного тепла с улицы в дом мы затратили 1кВт платной электроэнергии. Просто КОП не учитывает бесплатную тепловую энергию с улицы, а считает только ту, которую получили в результате и что для этого потратили.

Другой миф тоже связан с КОП: в паспортах тепловых насосов и на ценниках у продавцов гордо указывается одна-единственная величина КОП, которая просто вводит покупателей в заблуждение. Дело в том, что КОП тепловых насосов — величина переменная, а не постоянная. И многие недобросовестные дельцы об этом умалчивают, потому что указывают КОП для самых благоприятных условий, когда он чуть ли не максимальный. И это уже гораздо опаснее, чем заблуждения про сверхединичность КПД, т.к. чревато реальными последствиями.

Представьте, что вы уверовали, что будете тратить 1кВт электроэнергии на производство 5кВт тепла для того же отопления зимой, потому что в паспорте теплового насоса указано, что COP=5. Купили необходимой мощности тепловой насос, собрали систему отопления… А в самый неподходящий момент, когда морозы самые лютые, ваш отопитель жрёт не 1 к 5, а 1 к 2 в самом лучшем случае, или вообще не в состоянии выдать необходимое тепло для обогрева. И тут приходит понимание, что отапливаться конкретно этой системой можно лишь в межсезонье… Очень неприятная ситуация — отдать кучу денег и всё равно в морозы отапливаться дешёвыми масляными радиаторами, и только из-за того, что понадеялись на КОП и стабильную, неснижаемую выработку тепла.

А выработка тепла и КОП у тепловых насосов непостоянна. И связано это именно с непостоянным количеством тепла, подводимого к испарителю. К примеру, если вы берёте тепло для испарителя из воздуха, то с падением температуры на улице падает и КОП. При -30С на улице КОП воздушных тепловых насосов практически равен единице, т.е. даже простой ТЭН станет более экономичным в качестве отопителя, не говоря уж про амортизацию и повышенный износ дорогостоящего оборудования в таких условиях. И падение КОП — это ещё полбеды. Часто некоторые модели воздушных тепловых насосов просто не в состоянии выдавать необходимую для отопления мощность при значительном снижении температуры на улице.

Тепловые насосы, использующие для нагрева испарителя тепло земли или воды, тоже подвержены падению производительности и КОП, т.к. по ходу отопительного сезона они могут вымораживать ту среду, из которой качают тепло, но такие машины более стабильны.

Тепловой насос представляет собой устройство, позволяющее переносить тепловую энергию от менее нагретого тела к более нагретому телу, увеличивая его температуру. В последние годы тепловые насосы пользуются повышенным спросом как источник альтернативной тепловой энергии, позволяющий получать действительно дешевое тепло, не загрязняя при этом окружающей среды.

Сегодня их выпускают многие производители теплотехнического оборудования, а общая тенденция такова, что в ближайшие годы именно тепловые насосы займут лидирующие позиции в ряду отопительного оборудования.

Как правило, тепловые насосы используют тепло подземных вод , температура которых круглый год находится приблизительно на одном уровне и составляет +10С, тепло окружающей среды или водоемов.

Принцип их работы основывается на том, что любое тело, имеющее температуру выше значения абсолютного нуля, обладает запасом тепловой энергии, прямо пропорциональным его массе и удельной теплоемкости. Понятно, что моря, океаны, а также подземные воды, масса которых велика, обладают грандиозным запасом тепловой энергии, частичное использование которой на отоплении жилища никак не сказывается на их температуре и на экологической обстановке на планете.

«Забрать» тепловую энергию от какого-либо тела можно только охладив его. Количество выделенного при этом тепла (в примитивном виде) можно рассчитать по формуле

Q=CM(T2-T1) , где

Q - полученное тепло

C -теплоемкость

M - масса

T1 T2 - разность температур, на которую было произведено охлаждение тела

Из формулы видно, что при охлаждении одного килограмма теплоносителя от 1000 градусов до 0 градусов может быть получено такое же количество тепла, что и при охлаждении 1000кг теплоносителя от 1С до 0С.

Главное, суметь использовать тепловую энергию и направить ее на отопление жилых домов и производственных помещений.

Идея использования тепловой энергии менее нагретых тел возникла еще в середине 19 столетия, а ее авторство принадлежит знаменитому ученому того времени лорду Кельвину. Однако далее общей идеи дело у него не продвинулось. Первый проект теплового насоса был предложен в 1855 году и принадлежал он Петеру Риттеру фор Риттенгеру. Но и он не получил поддержки и не нашел практического применения.

«Второе рождение» теплового насоса относится к середине сороковых годов прошлого столетия, когда широкое распространение получили обычные бытовые холодильники. Именно они натолкнули швейцарца Роберта Вебера на идею использовать тепло, выделяемое морозильной камерой, для нагрева воды для хозяйственных нужд.

Полученный эффект оказался ошеломляющим: количество тепла оказалось столь велико, что его хватило не только для горячего водоснабжения, но и подогрева воды для отопления. Правда, при этом пришлось порядком потрудиться и придумать систему теплообменников, позволяющую утилизировать выделяемую холодильником тепловую энергию.

Однако вначале изобретение Роберта Вебера рассматривалось как забавная идея, и воспринималась подобно идеям из современной знаменитой рубрики «Очумелые ручки». Настоящий интерес к нему возник намного позже, когда действительно остро встал вопрос поиска альтернативных источников энергии. Вот тогда идея теплового насоса получила свое современное очертание и практическое применение.

Современные тепловые насосы можно классифицировать в зависимости от источника низкотемпературного тепла, которым может быть грунт, вода (в открытом или в подземном водоеме), а также наружный воздух.

Полученная тепловая энергия может передаваться воде и использоваться для устройства водяного отопления, и горячего водоснабжения, а также воздуху, и применяться для отопления и кондиционирования. Учитывая это, тепловые насосы делят на 6 видов:

  • От грунта к воде (грунт-вода)
  • От грунта к воздуху (грунт-воздух)
  • От воды к воде (вода-вода)
  • От воды к воздуху (вода-воздух)
  • От воздуха к воде (воздух-вода)
  • От воздуха к воздуху (воздух-воздух)

Каждый вид тепловых насосов имеет свои характерные особенности установки и эксплуатации.

Способ установки и особенности эксплуатации теплового насоса ГРУНТ-ВОДА

  • Грунт универсальный поставщик низкотемпературной тепловой энергии

Грунт обладает колоссальным запасом низкотемпературной тепловой энергии. Именно земная кора постоянно аккумулирует солнечное тепло и при этом подогревается изнутри, от ядра планеты. В результате на глубине нескольких метров грунт всегда имеет положительную температуру. Как правило, в центральной части России речь идет о 150-170 см. Именно на этой глубине температура грунта имеет положительное значение и не опускается ниже 7-8 С.

Еще одна особенность грунта состоит в том, что даже при сильных морозах он промерзает постепенно. В результате минимальная температура грунта на глубине 150 см наблюдается тогда, когда на поверхности уже наступает календарная весна и потребность в тепле для отопления снижается.

Это значит, что для того, чтобы «отобрать» тепло у грунта в центральном районе России, теплообменники для аккумуляции тепловой энергии необходимо расположить на глубине ниже 150 см.

В этом случае теплоноситель, циркулирующий в системе теплового насоса, проходя по теплообменникам, будет нагреваться за счет тепла грунта, затем, поступая в испаритель, передавать тепло воде, циркулирующей в системе отопления, и возвращаться за новой порцией тепловой энергии.

  • Что может использоваться в качестве теплоносителя

В качестве теплоносителя в тепловых насосах типа грунт-вода чаще всего используют так называемый «рассол». Его готовят из воды и этиленгликоля или пропиленгликоля. В некоторых системах используют фреон, что в значительной степени усложняет конструкцию теплового насоса и приводит к повышению его стоимости. Дело в том, что теплообменник насоса этого вида должен иметь большую площадь теплообмена, следовательно, и внутренний объем, что требует соответствующего количества теплоносителя.

Использование фреона хоть и повышает эффективность работы теплового насоса, но при этом требует абсолютной герметичности системы и ее устойчивости к повышенному давлению.

Для систем с «рассолом» теплообменники обычно делают из полимерных труб, чаще всего полиэтиленовых, диаметром от40-60мм. Теплообменники имеют вид горизонтальных или вертикальных коллекторов.

Представляет собой трубу, уложенную в грунт на глубине ниже 170 см. Для этого можно использовать любой незастроенный участок земли. Для удобства и увеличения площади теплообмена трубу укладывают зигзагом, петлями, спиралью и т.д. В дальнейшем этот участок земли можно использовать под газон, клумбу или огород. Следует отметить, что теплообмен между грунтом и коллектором идет лучше во влажной среде. Поэтому поверхность грунта можно смело поливать и удобрять.

Считается, что в среднем 1м2 грунта дает от 10 до 40 Вт тепловой энергии. В зависимости от потребности в тепловой энергии, петель коллектора может быть любое количество.

Вертикальный коллектор представляет собой систему труб, установленных в земле вертикально. Для этого бурятся скважины на глубину от нескольких метром до десятков, а то и сотен метров. Чаще всего вертикальный коллектор находится в тесном контакте с подземными водами, но это не является необходимым условием для его эксплуатации. То есть, вертикально установленный подземный коллектор может быть «сухим».

Вертикальный коллектор, так же, как и горизонтальный, может иметь практически любую конструкцию. Наибольшее распространение получили системы типа «труба в трубе» и «петли», по которым рассол подается насосом вниз и им же поднимается обратно к испарителю.

Следует отметить, что вертикальные коллекторы наиболее производительны. Объясняется это их расположением на большой глубине, где температура практически всегда находится на одном уровне и составляет 1-12 С. При их использовании с 1м2 можно получить от 30 до 100 Вт мощности. При необходимости количество скважин можно увеличивать.

Для улучшения процесс теплообмена между трубой и грунтом пространство между ними заливают бетоном.

  • Достоинства и недостатки тепловых насосов типа «грунт-вода»

Монтаж теплового насоса типа «грунт-вода» требует значительных финансовых вложений, но его эксплуатация позволяет получать практически бесплатную тепловую энергию. При этом не причиняется никакого ущерба окружающей среде.

Среди достоинств теплового насоса этого типа следует отметить:

  • Долговечность: может работать несколько десятилетий подряд без ремонта и технического обслуживания
  • Простоту эксплуатации
  • Возможность использования участка земли для земледелия
  • Быструю окупаемость: при отоплении помещений значительной площади, например от 300 м2 и выше, насос окупается за 3-5 лет.

Учитывая то, что установка теплообменника в грунт представляет собой сложные агротехнические работы, выполнять их следует обязательно с предварительной разработкой проекта.

Как работает тепловой насос

Тепловой насос состоит из следующих элементов:

  • Компрессора, работающего от обычной электрической сети
  • Испарителя
  • Конденсатора
  • Капилляра
  • Терморегулятора
  • Рабочего тела или хладагента, на роль которого в наибольшей степени подходит фреон

Принцип действия теплового насоса можно описать с помощью хорошо известного из школьного курса физики «Цикла Карно».

Поступающий в испаритель по капилляру газ (фреон) расширяется, его давление уменьшается, что приводит к его последующему испарению, при котором он, соприкасаясь со стенками испарителя, активно забирает у них тепло. Температура стенок снижается, что создает разницу температур между ними и массой, в которой находится тепловой насос. Как правило, это подземные воды, морская вода, озеро или масса земли. Не трудно догадаться, что при этом начинается процесс передачи тепловой энергии от более нагретого тела к менее нагретому телу, которым в данном случае, являются стенки испарителя. На данном этапе работы тепловой насос «выкачивает» тепло из среды теплоносителя.

На следующем этапе хладагент всасывается компрессором, затем сжимается и под давлением подается в конденсатор. В процессе сжатия его температура возрастает и может составлять от 80 до 120 С, что более чем достаточно для отопления и горячего водоснабжения жилого дома. В конденсаторе хладагент отдает свой запас тепловой энергии, остывает, переходит в жидкое состояние, а затем и поступает в капилляр. Затем процесс повторяется.

Для управления работой теплового насоса используется терморегулятор, с помощью которого прекращается подача электроэнергии в систему при достижении в помещении заданной температуры и возобновление работы насоса при снижении температуры ниже заранее определенного значения.

Тепловой насос можно использовать в качестве источника тепловой энергии и устраивать с ним системы отопления, аналогичные системам отопления на основе котла или печи. Пример такой системы приведен на схеме выше.

Следует отметить, что работа теплового насоса возможна только при подключении его к источнику электрической энергии. При этом может ошибочно возникнуть мнение, что вся система отопления основа на использовании именно электрической энергии. В действительности, для передачи в систему отопления 1кВт тепловой энергии необходимо затратить приблизительно 0,2-0,3 кВт электрической энергии.

Преимущества теплового насоса

Среди преимуществ теплового насоса следует выделить:

  • Высокую эффективность
  • Возможность переключения с режима отопления на режим кондиционирования и его последующее использование летом для охлаждения помещений
  • Возможность использования эффективной системы автоматического контроля
  • Экологическую безопасность
  • Компактность(размер не более бытового холодильника)
  • Бесшумность работы
  • Пожарную безопасность, что особенно важно для обогрева загородных домов

Среди недостатков теплового насоса следует отметить его высокую стоимость и сложность монтажа .

Сегодня весь цивилизованный мир борется за экономию энергоресурсов. Конечно, вечный двигатель пока создать никому не удалось, но практически постоянный источник теплоснабжения уже найден. Это – окружающая нас среда:

  • атмосфера;
  • почва;
  • грунтовые воды;
  • естественные водоемы.

Остается только вопрос: каким образом можно аккумулировать тепло из внешней среды и направить его на внутренние потребности?

Для этих целей используется такой агрегат, как тепловой насос. Фактически многие из технически образованных людей его уже знают – он реализован в любой современной холодильной либо климатической системе.

Причем в этот агрегат работает самым непосредственным образом: в режиме обогрева они аккумулируют внешнее атмосферное тепло, передавая его на внутренние теплопередающие устройства – вентилируемые радиаторы.

Сразу следует оговориться, что посредством такого аппарата эффективным будет отопление любых изолированных пространств при температуре источника тепла, превышающей один градус по Цельсию .


Принцип действия этого агрегата основоположен на законе Карно . Он основан на аккумуляции низкопотенциальной тепловой энергии хладагентом с последующей передачей ее потребителю .

  1. Хладагент, имеющий более низкую температуру, нагревается от внешних источников – грунта, глубинных скважин, естественных водоемов, при этом переходя в газообразное агрегатное состояние.
  2. Он принудительно сжимается компрессором, при этом нагреваясь еще больше , и вновь обретает жидкое состояние, высвобождая при том всю накопленную тепловую энергию в радиаторах отопления.
  3. Цикл повторяется – жидкий хладагент вновь попадает во внешний контур системы, где, испаряясь, заряжается тепловой энергией от внешних источников тепла.

При этом расходуется только электроэнергия, необходимая для сжатия и циркуляции в системе хладагента, то есть, обогрев внутренних помещений осуществляется максимально экономичным способом.

Виды тепловых насосов

Существует три основные модификации тепловых насосов:

      • «вода – вода»;
      • «грунт – вода»;
      • «воздух – вода».

Теплогенераторы класса «вода – вода»

Сегодня теплонасосные агрегаты широко применяются в высокоразвитых странах Европы. Например, в Нидерландах посредством этого теплообменного устройства отапливаются целые коттеджные поселки , поскольку там имеется изобилие геотермальных шахт, заполненных водой с постоянной температурой в 32 градуса по Цельсию. А это практически дармовой источник тепла.

Подобная вариация теплогенерирующего
оборудования называется «вода – вода». К этой категории относятся любые типы тепловых систем, использующих в качестве источников тепловой энергии жидкие среды .

Обычно этот принцип действия реализуется следующим образом:

  • теплая вода из скважины подается к внешнему , после чего она сбрасывается в другую скважину либо в близлежащий водоем.
  • радиатор монтируется на дне незамерзающего водоема . Исполняется он из нержавеющей либо металлопластиковой трубы. Причем для экономии дорогостоящего хладагента – фреона – зачастую применяется промежуточный контур теплоносителя, заполненный «незамерзайкой» - тосолом либо раствором гликоля (антифризом).

Стоимость агрегатов типа «вода – вода» варьируется в значительных пределах и зависит, в первую очередь, от мощности теплогенерации и страны-производителя.

Так, самый маломощный агрегат российского производства , способный развивать тепловую мощность порядка 6 кВт, обойдется в сумму почти 2000 долларов , а промышленноe двухкомпрессорное оборудование мощностью более 100 кВт, будет стоить уже почти тридцать тысяч долларов США .

Агрегаты класса «воздух – вода»


При использовании в качестве источника тепловой энергии атмосферы либо солнечных лучей
тепловой насос считается класса «воздух – вода». В этом случае на внешний теплообменник зачастую устанавливается циркуляционный вентилятор, дополнительно нагнетающий теплый внешний воздух.

Стоимость 18-киловаттного воздушного теплового аппарата этого класса российского производства начинается с отметки в 5000 долларов США , а за двенадцатикиловаттное оборудование японской компании Fujitsu потребителю придется выложить уже почти 9 тысяч долларов США.

Оборудование класса «грунт – вода»

Существует также вариация, использующая в качестве источника тепловой энергии потенциал, накопленный в грунте .
Возможны два типа подобных конструкций: вертикальная и горизонтальная.

  • Вертикальная — компоновка теплосборного коллектора линейная. Вся система размещается в вертикальных траншеях, глубина которых составляет 20…100 метров .
  • Горизонтальная — компоновки внешнего коллектора, обычно металлопластиковые спирально свитые трубы, укладываются в 2…4-метровые горизонтальные траншеи . Причем в этом случае, чем больше глубина залегания внешнего теплоприемника, тем лучше работает отопление «из земли» .

Цена на агрегаты класса «грунт – вода» сравнима с оборудованием аналогичной мощности класса «вода – вода» и начинается с отметки в две тысячи долларов США за шестикиловаттный насос .

Плюсы и минусы отопительной системы, основанной на тепловом насосе

К положительным свойствам тепловых насосов можно отнести:

Отзыв: В прошлом году приобрел тепловой насос моноблок системы «воздух — вода» для отопления загородного дома. Дорого, конечно, но надеюсь, лет за 10 окупится. Поставщик сам установил насос и подключил к системе отопления, все работает практически без моего участия. Выбором доволен.

К недостаткам теплового насоса относят:

  • Высокую стоимость монтажа . Для нормальной работы теплового оборудования необходимо приложить значительные усилия – вырыть траншеи большой продолжительности, проложить глубокие скважины либо преодолеть зачастую значительные расстояния до ближайшего водоема.
  • Необходимость качественной реализации системы . Малейшая утечка хладагента либо промежуточного теплоносителя способна свести на нет все старания. Поэтому при закладке схемы любой вариации необходимо использовать труд исключительно квалифицированных специалистов и в процессе эксплуатации системы исключить риск ее разгерметизации.

Тепловой насос своими руками. Сборка и установка

Конечно, первичные вложения на организацию отопления дома согласно этой технологии весьма высоки. Поэтому у многих обывателей, заинтересовавшихся этой сверхэконмичной системой, возникает желание хоть немного сэкономить, соорудив ее самостоятельно.

Для этого нужно:

  • Приобрести компрессор . Подойдет любой работоспособный агрегат от бытовой сплит-системы кондиционирования.
  • Соорудить конденсатор . В самом простом случае в качестве оного может выступать обычный бак из нержавейки, объем которого составляет 100 литров . Он разрезается напополам, внутри его монтируется змеевик из медной трубы малого диаметра. Толщина стенки змеевика должна быть не ниже одного миллиметра. После раскрепления змеевика необходимо обратно сварить бак в целостную конструкцию, соблюдая условия герметичности.
  • Собрать испаритель . Это может быть и пластиковая 60–80-литровая емкость с вмонтированной в нее трубой на ¾ дюйма.
  • Для организации внешнего контура, расположенного в грунте, лучше использовать современные – они намного более долговечные, нежели классические металлические и монтаж их гораздо надежнее и быстрее.

Осталось только пригласить мастера по холодильному оборудованию, чтобы он, используя специализированную оснастку, качественно загерметизировал все стыки системы и заправил ее фреоном.

Смотрите видео о монтаже теплового насоса Daikin Altherma:

На этом монтаж теплогенерирующей установки заканчивается. Можно пользоваться всеми ее преимуществами, главным из которых является низкое потребление энергоресурса – электроэнергии при значительной мощности теплогенерации.



Поделиться: