Виды тросов. Стальной канат: классификация и критерии выбора троса. Виды и маркировка изделий

Являются основным силовым элементом тросового такелажа. Не смотря на кажущуюся простоту, он является сложным инженерным объектом.

Классификация тросов (ГОСТ 3066-80; ГОСТ 3067-80) идет более чем по десяти признакам. Отметим наиболее часто используемые классификации.

1. По конструкции выделяют следующие виды тросов:

    Одинарной свивки (спиральные) - состоящие из одного, двух, трех и более концентрических слоев проволоки, свитых по спирали;

    Двойной свивки - состоящие из прядей, свитых в один или несколько концентрических слоев;

    Тройной свивки - состоящие из канатов двойной свивки (стренг), свитых в концентрический слой.

2. По типу свивки прядей:

    С точечным касанием проволок между слоями - ТК;

    С линейным касанием проволок между слоями - ЛК;

    С линейным касанием проволок между слоями при одинаковом диаметре проволок по слоям пряди - ЛК-О;

    С линейным касанием проволок между слоями при разных диаметрах проволок в наружном слое пряди - ЛК-Р;

    С линейным касанием проволок между слоями и проволоками заполнения - ЛК-З;

    С линейным касанием проволок между слоями и имеющих в пряди слои с проволоками разных диаметров и слои с проволоками одинакового диаметра - ЛК-РО;

    С комбинированным точечно-линейным касанием проволок - ТЛК.

3. По форме поперечного сечения прядей:

    Круглопрядные;

    Фасоннопрядные

4. По степени крутимости:

    Крутящиеся (с одинаковым направлением свивки проволок в канатах одинарной свивки, прядей или стренг);

    Малокрутящиеся (многослойные, многопрядные и одинарной свивки с противоположным направлением свивки элементов по слоям) - МК.

5. По материалу сердечника:

    С органическим сердечником из натуральных или синтетических материалов - ОС;

    С металлическим сердечником - МС.

6. По способу свивки:

    Нераскручивающиеся - Н;

    Раскручивающиеся.

7. По степени уравновешенности:

    Рихтованные - Р;

    Нерихтованные.

8. По направлению свивки каната:

  • Левой - Л.

9. По сочетанию направлений свивки канатов и его элементов в канатах двойной и тройной свивки:

    Крестовой свивки (направление свивки каната и направление свивки стренг и прядей противоположны);

    Односторонней свивки (направление свивки каната и направление свивки проволоки в пряди одинаковы) - О.

10. По механическим свойствам:

    Марок - ВК, В, I.

11. По виду покрытия поверхности проволок в канате:

    Из проволоки без покрытия;

    Из оцинкованной проволоки: в зависимости от поверхностной плотности цинка - С, Ж, ОЖ.

12. По назначению:

    Грузолюдские - ГЛ (марок ВК, В);

    Грузовые - Г.

13. По точности изготовления:

    Нормальной;

    Повышенной - Т.

Полное обозначение каната стального по ГОСТ выглядит следующим образом.

На практике допускается существенное упрощение обозначений тросов:
N1 x N2 + ABC, где
N1 - число прядей в тросе,
N2 - число проволок в пряди,
ABC - тип сердечника.

Различаются типы сердечников:

  • FC - органический;
  • IWS - металлический.

Востребованными являются тросы в полимерной (полихлорвинил) изоляции, которая эффективно предотвращают коррозию троса. Изоляция может быть прозрачной, красной, синей или других цветов.


На практике возникает необходимость определить «номинальный диаметр» троса. Для замера фактического диаметра требуется штангенциркуль, длина губок которого превышает ¾ диаметра троса. Замеры выполняют в двух поперечных сечениях, расстояние между которыми не менее 1 м. В каждом сечении диаметр измеряют дважды по максимальному расстоянию между крайними точками.

Для нового троса среднее арифметическое этих четырех замеров должно быть внутри поля допусков, указанных для номинального диаметра.

Очень часто трос является основным силовым элементом стропа - приспособления, в котором собственно трос законцовывается тем или иным способом и оснащается различными соединительными элементами.

На конце стропа на трос в большинстве случаев устанавливается коуш - каплевидная, круглая или треугольная оправка из металла с желобом на наружной стороне. Коуш заделывается в петлю троса (огон), чтобы предохранить его от истирания и излома. Петля при этом получается более плавной.

Петля с использованием коуша

Чтобы петля, огибающая коуш, была зафиксирована, используются зажимы тросов.

На рисунке выше коуш заделан самым надежным способом: с использованием технологии Talurit. Зажим представляет собой втулку, чаще всего алюминиевую, весьма точную в изготовлении. Концы троса заправляются в нее и с помощью специальной прецизионной матрицы обжимаются на прессе с усилием до 200 тонн.

Недостатком этой технологии является потребность в сложном оборудовании и, как следствие, ее низкая мобильность.

Более простые и доступные зажимы троса состоят из U-образной скобы с запирающей колодкой и двумя гайками. Может быть два варианта исполнения:

Для обеспечения надёжности зажимов степень затяжки (расстояние между внутренними поверхностями колодки и зевом скобы) должна составлять 0,72 - 0,75 удвоенного диаметра ненагруженного каната с органическим сердечником и 0,85 - 0,87 - каната с металлическим сердечником.

Одинарный и двойной плоские зажимы рассчитаны на тонкие тросы диаметром до 8 мм.

Для рассмотренных зажимов существуют правила установки. Зажим должен устанавливаться на стальной канат (трос) так, как это показано на Рис. 1-3. Перемычка зажима всегда должна располагаться на стороне каната, несущей нагрузку. U-образный болт зажима помещается на хвостовую часть каната, также называемую глухим (мертвым) концом. Нужно загнуть достаточно длинную часть каната, чтобы можно было разместить минимально необходимое число зажимов в соответствии с приводимыми далее инструкциями. Первый зажим должен размещаться на расстоянии одной ширины перемычки от загнутого или глухого конца каната, как показано на Рис. 1. Затягивать гайки следует в соответствии с указанным моментом.

Второй зажим должен быть размещен непосредственно напротив коуша, но все же в таком положении, чтобы надлежащее затягивание зажима не повредило внешних прядей каната (Рис. 2). Следует зажать гайки плотно, но еще не на весь указанный момент затяжки.

Последующие зажимы располагаются на канате между первым и вторым зажимами таким образом, чтобы их как минимум разделяло расстояние в 1 ширину зажима и максимально в 3 ширины зажима, как это показано на рисунке 3 и в таблице 1.


Тросовые зажимы в общем соответствии с EN 13411-5

Диаметр каната, мм

Минимальное количество зажимов, шт

Усилие затяжки, Нм

И, наконец, еще один зажим троса - клиновой . Он состоит из двух деталей: обоймы и клина. Схема установки представлена на Рис. 4.

Эксплуатационные качества тросов. Тросами (канатами) называются изделия из нитей растительных и искусственных волокон или из стальных проволок. По материалу, использованному для изготовления, тросы подразделяются на растительные, синтетические, стальные и комбинированные, а по способу изготовления - на витые (крученые), невитые и плетеные.

При выборе троса для работы в конкретных условиях руководствуются его эксплуатационными качествами, которые определяются физико-механическими характеристиками троса. Важнейшими из них являются прочность, гибкость и эластичность.

Прочность троса - способность его выдерживать нагрузки на растяжение. Она зависит от материала, конструкции, способа изготовления и толщины троса. Последняя измеряется в миллиметрах: растительных и синтетических тросов - по длине их окружности, стальных - по диаметру. Прочность является основным критерием оценки любого троса, предназначенного для работы в сильно напряженном состоянии.

Различают разрывную и рабочую прочность троса.

Разрывная прочность троса определяется той наименьшей нагрузкой, при которой он начинает разрушаться. Эта нагрузка R называется разрывным усилием. Его численное значение в ньютонах указано в государственных стандартах и может быть вычислено приближенно по формулам.

Для растительных и синтетических тросов:

для стальных тросов:

где f - эмпирический коэффициент; С - длина окружности сечения троса, мм; d, - диаметр троса, мм.

Рабочая прочность троса определяется той наибольшей нагрузкой, при которой он может работать в конкретных условиях длительное время без нарушения целости отдельных элементов и всего троса. Эта нагрузка называется допустимым усилием. Его значение в ньютонах устанавливается с определенным запасом прочности:

где R - разрывное усилие, Н; k - коэффициент запаса прочности, выбираемый в зависимости от назначения и условий эксплуатации троса.

Для большинства судовых тросов коэффициент запаса прочности берется равным 6, а в устройствах для подъема людей - не менее 12.

Гибкость троса - способность его изгибаться без нарушения структуры и потери прочности. Чем больше гибкость троса, тем удобнее и безопаснее работать с ним.

Эластичность (упругость) троса - способность его удлиняться при растяжении и принимать первоначальные размеры без остаточных деформаций после снятия нагрузки. Эластичные тросы являются оптимальными в условиях приложения динамических нагрузок.

Для надлежащего ухода за тросами, их правильного хранения и использования на судне важно также знать и учитывать стойкость тросов к воздействиям внешних факторов: воды, температуры, солнечной радиации, химических веществ, микроорганизмов и др. Нормативами и государственными стандартами определены требования к качеству исходных материалов и основные характеристики тросов.

Изготавливают растительные тросы из специально обработанных прочных длинных волокон некоторых растений. По способу свивки они могут быть тросовой и кабельной работы.

Рис. 1. Растительные тросы.

Изготовление растительного троса (рис. 1) начинают со свивки нитей 1 в каболки 2. Из нескольких каболок свизают прядь 3, а несколько прядей, свитых вместе, образуют трос тросовой работы (рис. 1, а ). В зависимости от числа прядей тросы бывают трех-, четырех- и многопрядные. Трос с меньшим числом прядей прочнее троса такой же толщины, свитого из большего числа прядей, но уступает ему в гибкости. Трос кабельной работы (рис. 1, б ) получается путем свивки нескольких тросов тросовой работы, которые в структуре такого троса называются стрендями 4. Трос кабельной работы менее прочен, чем трос тросовой работы такой же толщины, но более гибок и эластичен. Чтобы трос не раскручивался и сохранял свою форму, свивку каждого последующего элемента троса делают в сторону, противоположную свивке предыдущего элемента. Обычно волокна свивают в каболки слева направо. Тогда каболки в пряди свивают справа налево, а пряди в трос - снова слева направо. Такой трос называется тросом прямого спуска, или правой свивки (рис. 1, в ), а трос с противоположным направлением свивки элементов - тросом обратного спуска, или левой свивки (рис. 1, г).

На судах морского флота наибольшее применение получили пеньковые, манильские и сизальские растительные тросы. Реже используют тросы кокосовые, хлопчатобумажные и льняные.

Пеньковые тросы изготавливают из волокон конопли - пеньки. Существенным недостатком этих тросов является их большая гигроскопичность и подверженность гниению. Для предотвращения гниения пряди троса свивают из просмоленных каболок. Такой трос называется смоленым, а трос, изготовленный из непросмоленных каболок, - бельным. Прочность смоленого троса примерно на 25% ниже прочности бельного троса такой же толщины, а масса на 11 - 18% больше. Пеньковые тросы тросовой работы изготавливают бельными и смолеными, а тросы кабельной работы - только смолеными. Последние как более влагостойкие используют преимущественно в качесте швартовных тросов. Бельные тросы имеют серо-зеленоватый цвет, смоленые - от светло- до темно-коричневого. Пеньковые тросы удлиняются без потери прочности на 8-10%.

Манильские тросы изготавливают из волокон тропического банана абаки - манильской пеньки. Из всех растительных тросов они имеют наилучшие эксплуатационные характеристики: большую прочность, гибкость и эластичность - удлиняются без потери прочности на 20 - 25%. Тросы медленно намокают и не тонут в воде, под влиянием влаги не теряют эластичности и гибкости, быстро сохнут и поэтому мало подвержены гниению. Цвет этих тросов от светло-желтого до золотисто-коричневого.

Сизальские тросы изготавливают из волокон листьев тропического растения агавы - сизальской пеньки. Они эластичны, как манильские тросы, но уступают им в прочности, гибкости и влагостойкости, в намокшем состоянии становятся хрупкими. Цвет этих тросов светло-желтый.

Кокосовые тросы изготавливают из волокон, покрывающих кокосовые орехи. Тросы не тонут в воде, вдвое легче смоленых пеньковых тросов, но обладают меньшей прочностью. Тросы весьма эластичны - при нагрузке на растяжение, близкой к разрывному усилию, они удлиняются на 30 - 35%.

Хлопчатобумажные тросы используются в основном для хозяйственных нужд. Они недостаточно прочны, недолговечны, весьма гигроскопичны и сильно вытягиваются.

В зависимости от способа изготовления и толщины растительные тросы имеют специальные названия:

  • лини - тросы тросовой работы толщиной до 25 мм и тросы кабельной работы толщиной до 35 мм;
  • перлини - тросы кабельной работы толщиной 101 - 150 мм;
  • кабельтовы - тросы кабельной работы толщиной 151 - 350 мм;
  • канаты - тросы кабельной работы толщиной более 350 мм.

Лини большой прочности свивают из нескольких каболок высококачественной пеньки. Линь, свитый из низкосортной пеньки, называется шкимушгаром. Он идет на изготовление матов, кранцев и других изделий. Лини, полученные путем сплетения льняных нитей, называются шнурами. Плетеные шнуры гибки и эластичны, не имеют больших наружных изменений и деформаций в результате скручивания.

При расчете разрывного усилия для растительных тросов принимают следующие значения эмпирического коэффициента:

  • для манильского - 0,65;
  • для пенькового бельного - 0,6;
  • для пенькового смоленого - 0,5;
  • для сизальского - 0,4.

Синтетические тросы. В зависимости от марки полимера эти тросы подразделяют на полиамидные, полиэфирные и полипропиленовые. К полиамидным относятся тросы, изготовленные из волокон капрона, найлона (нейлона), перлона, силона и других полимеров. Полиэфирные тросы изготавливают из волокон лавсана, ланона, дакрона, диолена, терилена и других полимеров. Материалами для изготовления полипропиленовых тросов служат пленки или мононити полипропилена, типтолена, бустрона, ульстрона и др.

Синтетические тросы имеют большие преимущества перед растительными. Они значительно прочнее и легче последних, более гибки и эластичны, влагостойки, в большинстве своем не теряют прочности при намокании и не подвержены гниению. Такие тросы стойки к растворителям (бензину, спирту, ацетону, скипидару). Полиамидные и полиэфирные тросы сохраняют все свои свойства при изменении температуры воздуха от - 40 до +60°С, что позволяет использовать их при работе судна в различных климатических условиях.

При эксплуатации синтетических тросов необходимо учитывать их особенности. Полиамидные тросы повреждаются под воздействием солнечной радиации, кислот, олифы, мазута, а полиэфирные - от соприкосновения с концентрированными кислотами и щелочами. Разрывная прочность полипропиленовых тросов снижается при температуре свыше +20°С, а при отрицательных температурах понижается их гибкость. При трении о поверхности деталей оборудования и в результате трения прядей между собой тросы способны накапливать статическое электричество, которое может вызвать искрообразование и повреждение тросов. Наружные волокна недостаточно стойки к истиранию и могут оплавляться особенно при трении о шероховатые поверхности.

Синтетические тросы очень эластичны. Так, при нагрузке, равной половине разрывного усилия, относительное удлинение плетеных восьмипрядных тросов следующее: полипропиленовых - 21 - 23%, полиэфирных - 23 - 25%, полиамидных - 35 - 37%. Такая большая эластичность делает сильно натянутый трос опасным для работающих, так как при разрыве концы его могут нанести им травму. Менее опасны плетеные восьмипрядные тросы, нежели крученые трехпрядные. Кроме того, они более стойки к истиранию, обладают лучшей гибкостью, сохраняют структуру и форму даже при обрыве двух прядей, выдерживая при этом нагрузку, составляющую 75% разрывного усилия. Отсутствие крутящего момента у плетеного троса, находящегося в напряженном состоянии, делает его более удобным в эксплуатации.

Разрывная прочность синтетических тросов зависит от марки полимера (см. таблицу).

Таблица. Значения разрывного усилия (кН) для плетеных восьмипрядных тросов в зависимости от материала их изготовления.

Вид троса Длина окружности сечения троса, мм
80 90 100 105 115 125 140 150 165 175 190 200
Полиамидный 118 139 176 197 219 264 315 370 430 476 563 635
Полиэфирный 94 108 138 155 190 210 251 296 345 394 439 511
Полипропиленовый 74 89 112 123 143 165 191 222 256 291 334 379

Плетеные и крученые капроновые тросы отечественного производства бывают обычными и повышенной плотности. Разрывная прочность последних выше разрывной прочности обычных. Значения разрывного усилия для обычных плетеных восьмипрядных тросов следующие:

Значения разрывного усилия для плетеных восьмипрядных тросов повышенной плотности следующие:

Их изготавливают обычно из оцинкованной проволоки. По качеству оцинковки проволоку подразделяют на три группы с индексами ЛС (для легких условий работы), СС (для средних условий работы) и ЖС (для жестких условий работы).

Рис. 2. Стальные тросы.

По конструкции тросы бывают одинарной, двойной и тройной свивки. Трос одинарной свивки, называемый также спиральным (рис. 2,а), состоит из одной пряди, у которой проволоки свиты по спирали в один или несколько рядов вокруг центральной проволоки. Несколько прядей, свитых вокруг одного сердечника, образуют трос двойной свивки (рис. 2.6). Это трос тросовой работы. Трос тройной свивки (рис. 2,е ) получают путем свивки нескольких тросов двойной свивки. Он представляет собой трос кабельной работы.

В зависимости от способа свивки проволок в многорядной пряди различают тросы с линейным и точечным касанием проволок. В тросе с линейным касанием проволоки каждого последующего ряда свиваются вокруг центрального сердечника в ту же сторону, что и проволоки предыдущего ряда. В этом случае ряды проволок соприкасаются по всей длине проволоки. Такой тип троса обозначается буквами ЛК. Значения разрывного усилия для тросов типа ЛК конструкции 6X30 (0+15+15) + 10С следующие:

Диаметр троса, мм 19 21 23 26,5 28,5 30,5 32,5 34,5
Разрывное усилие. кН 143 177,5 215,5 284 332 373 416 473
Диаметр троса, мм 38 42 46 48 50 53,5 57 61 65
Разрывное усилие, кН 572,5 711 831 909,5 994,5 1130 1330 1490 1660

При свивании проволок каждого последующего ряда в сторону, противоположную свивке проволок предыдущего ряда, получается трос с точечным касанием проволок, обозначаемый буквами ТК.

Значения разрывного усилия для тросов типа ТК конструкции 6X37(1+6+12+18)+10С следующие:

По направлению свивки проволок в пряди и прядей в трос различают тросы односторонней, крестовой и комбинированной свивки.

Трос односторонней свивки (правой или левой) получают свивкой прядей в том же направлении, в каком свиты проволоки в пряди. При свивке прядей в трос в направлении, противоположном свивке проволок в пряди, получается трос крестовой свивки. Если же первая половина прядей имеет свивку в одну сторону, а вторая половина - в противоположную, такой трос называется тросом комбинированной свивки.

В качестве сердечников для тросов применяются стальная проволока, промасленные пеньковые и другие растительные тросы тросовой работы, синтетические и асбестовые материалы. Сердечник обеспечивает плотность троса и сохранение его формы на изгибах при большом натяжении, делает трос более мягким и гибким. Промасленные сердечники, кроме того, предохраняют внутренние проволоки от ржавления, а асбестовые - от преждевременного изнашивания тросов, используемых в условиях высоких -температур. Кроме центрального сердечника из различных материалов, многие типы тросов имеют сердечники из органических материалов внутри каждой пряди.

По степени гибкости тросы подразделяют на жесткие и гибкие. Жесткими называют тросы одинарной свивки, изготовленные из проволок с высоким пределом прочности, свитых в несколько рядов вокруг проволочного сердечника, а также тросы тросовой работы с одним сердечником из органического материала. Гибкими называют тросы тросовой работы, каждая прядь которых свита из тонких проволок и имеет сердечник из органического материала, а также свитые из таких тросов тросы кабельной работы.

Комбинированные тросы. Их применяют как буксирные и в качестве швартовов. Для их изготовления используют различные полимеры (в сочетании), а также синтетические и стальные тросы с волокнами растительного происхождения. Факторами, определяющими выбор материалов для изготовления комбинированных тросов, являются эксплуатационные характеристики, которым они должны соответствовать.

Для условного обозначения конструкции, структуры и характеристики стальных тросов применяют буквенную и цифровую системы. Число прядей в тросе указывается цифрой, а конструкция пряди - суммой цифр, из которых первая характеризует сердечник, вторая указывает число проволок в первом ряду, третья - число проволок во втором ряду и т. д. Например, запись для двухрядной пряди (1+6+12) означает, что прядь имеет сердечник из одной (центральной) проволоки, в первом ряду пряди 6 проволок, во втором - 12. У прядей с органическим сердечником вместо цифры 1 ставят цифру 0. Запись за скобкой +1 ОС означает, что многопрядный трос имеет общий органический сердечник. Так, для многопрядного троса запись 6X24 (0 + 9+15)+ 1ОС означает: трос шестипрядный, каждая прядь имеет 24 проволоки, свитые вокруг органического сердечника в 2 ряда по 9 и 15 проволок соответственно, а пряди свиты вокруг общего органического сердечника.

Тросами (канатами) называют изделия, свитые из стальных проволок или скрученные из растительных и искусственных волокон. По материа-лу тросы делятся на растительные, стальные (проволочные), комбиниро-ванные и синтетические.

Делают из обработанного соответствующим об-разом растительного волокна. В зависимости от исходного материала растительные тросы бывают пенько-вые, манильские и сизальские.

Пеньковые тросы изготовляют из волокон конопли — пеньки. Пенька может употребляться в чистом виде (бельные тросы) и просмоленная (смоленые тросы). Осмолка пеньки предохраняет трос от действия влаги и быстрого загнивания, но его прочность при этом несколько понижается. Пеньковые тросы прочны и элас-тичны, но сильно впитывают влагу, поэтому они тонут в воде, а в холод-ную и сырую погоду становятся тяжелыми и жесткими.

Манильские тросы , изготовляемые из волокон стеблей и листьев бана-нового дерева, очень удобны для использования на судах. Особенность этих тросов — низкая гигроскопич-ность, благодаря чему они не тонут в воде. Эти тросы — самые прочные из растительных и отличаются гибкостью и значительной эластич-ностью.

Сизальские тросы делают из волокон листьев тропического растения агавы. Эти тросы уступают по прочности пеньковым. Они имеют большую жесткость, в результате чего быстро изнашиваются.

Растительные тросы изготовляют следующим образом. Сначала волок-на свивают в каболки. Затем из не-скольких каболок получают прядь. Три-четыре пряди, свитые вместе, образуют трос, который называют тросом тросовой работы (рис. 1, а). Несколько тросов (три-четыре) тро-совой работы, свитые вместе, обра-зуют трос кабельной работы (от-воротный трос). Используемые при этом тросы тросовой работы полу-чают название стрендей (рис. 1, б)

Рис. 1 Растительные тросы а — тросовой работы, б — кабельной работы, в — прямого спуска, г — обратного спуска, 1 — каболки, 2 — пряди, 3 — стренди

Для того чтобы трос не раскру-чивался и сохранял постоянную форму, составные элементы (каболки пряди, стренди и тросы в целом) скручивают в разные стороны. Обычно волокна свивают в каболки по часовой стрелке так, что витки идут слева вверх направо, каболки в пряди в обратную сторону, а прядь в трос снова по часовой стрелке При таком направлении, свивки получается трос прямого спуска (Z-образный) (рис. 1, в). В отдельных случаях применяют обратное направление свивки. Такие тросы называют тросами обратного спуска (S-образный) (рис. 1, г).

Нашли применение на судах также плетеные тросы, которые состоят из одной слабо свитой пряди, покрытой оплеткой из льняных ниток. Эти тросы мало тянутся и не скру-чиваются, поэтому употребляются для сигнальных фалов и лаглиней забортных лагов.

Толщину растительных тросов измеряют по длине окружности. В зависимости от нее эти тросы имеют специальные названия. Так, тросы толщиной до 25 мм называются линями, от 100 до 150 мм — перлинями, от 150 до 350 мм — кабельтовыми и свыше 350 мм — канатами (тросы при длине окружности 25—100 мм не имеют спе-циального названия).


Рис. 2 Стальные тросы различной свивки: а — одинарной; б — двойной; в — тройной

Стальные тросы изготавливают из стальной, обычно оцинкованной, про-волоки диаметром 0,2—5 мм. В зави-симости от числа повивов разли-чаются тросы одинарной, двойной и тройной свивки (рис. 2). Наиболее просто сделать стальной трос одинар-ной свивки. В этом случае несколько проволок свивают непосредствен-но в трос.

Такие однопрядные тросы называют спиральными. Но чаще и в большом ассортименте изготавли-вают тросы двойной свивки: проволоку сначала свивают в пряди, а затем несколько прядей свивают в трос. Если несколько таких тросов свить вместе, то получится трос тройной свивки.

Многопрядные тросы свивают вок-руг центрального сердечника (рис. 3), в качестве которого используют стальную проволоку или органичес-кие волокна. Сердечник, заполняя пустоту внутри троса, препятствует проваливанию прядей к центру, а органический сердечник, содержа-щий антикоррозионную смазку, кроме того, предохраняет проволоку троса от ржавления, чем увеличи-вается срок его службы. Кроме центрального сердечника, некоторые тро-сы могут иметь органический сердеч-ник внутри каждой пряди.

Большое практическое значение имеет классификация тросов по их гибкости. Наиболее жесткими являются однопрядные спиральные тросы. К жестким относятся тросы, имею-щие проволочный сердечник, а тросы с центральным органическим сердеч-ником — к полужестким. Гибкие тро-сы имеют несколько органических сердечников. Наибольшей гибкостью обладают тросы тройной свивки.

Для обозначения марок стальных тросов принята цифровая система, по которой каждый трос маркируют произведением чисел: первое из них указывает число прядей в тросе, второе — количество проволок в каждой пряди. При маркировке тро-са тройной свивки впереди добав-ляют еще один сомножитель, который указывает число стрендей в тросе. Количество органических сердечни-ков в тросе указывает последняя цифра.


Рис. 3 Стальные тросы с сердечником: а — проволочным, б — синтетическим, в — органическим

6 X 24 + 7 означает трос двойной свивки, состоящий из 6 прядей, каждая из которых свита из 24 проволок, и имеющий 7 органических сердечников. Шестистрендный трос тройной свивки, каждая стрендь которого свита из 7 прядей по 19 проволок и имеет один органический сердечник, будет обозначаться: 6 X 7 X 19 + 1.

Комбинированные тросы имеют пряди, состоящие из стальных оцинкованных проволок, покрытых пряжей растительного происхожде-ния.

Синтетические тросы изготавли-вают из искусственных волокон, к числу которых относятся капрон, нейлон, куралон и наиболее распро-страненный сейчас полипропилен. Эти тросы по своей прочности, эластичности, гибкости и долговеч-ности значительно превосходят са-мые лучшие растительные. Они не подвержены гниению и плесени, поч-ти не поддаются действию нефти, ма-сел, щелочей и кислот. Для судовых работ применяют чаще всего круче-ные трехпрядные синтетические тро-сы, а для швартовных концов разрешается применять плетеные восьмипрядные синтетические тросы.

Применение тросов на судах тре-бует знания их основных характе-ристик, из которых важнейшей является прочность. Прочность троса характеризуется его разрывным уси-лием, под которым понимают минимальную нагрузку, разрывающую трос. Разрывное усилие троса зави-сит от его диаметра и конструкции, вида свивки и материала, диаметра проволоки, качества стали и т.д.

Величины разрывного усилия тросов приведены в государственных стан-дартах. Для практических целей часто достаточно знать приближен-ное значение разрывного усилия которое можно определить по различным эмпирическим формулам.

Так, например, разрывное усилие R (в Н) и массу G (в кг) 100 нормального трехпрядного манильского троса тросовой работы определяют:

Где f — эмпирический коэффициент, величии которого изменяется в пределах до 4 при изменении длины окружности троса от 30 до 350 мм. Более точно этот коэффициент может быть определен по формуле

f = 650 — 0 , 75 С 100

С — длина окружности троса, мм.

Таблица 1

Разрывное усилие других типов растительных тросов можно определить по тем же формулам с введением поправки, указанной ниже (в % вычисленного значения R ) :

  • Манильский повышенной прочности + 30;
  • Сизальский нормальный — 30;
  • То же повышенной проч-ности — 0;
  • Пеньковый бельный, нор-мальный — 20;
  • То же специальный + 5;
  • То же смоленый нормальный — 25;
  • То же специальный.

Синтетические тросы имеют значительно более высокую прочность. Разрывное усилие куралонового тро-са в 1,5 раза, а нейлонового и капронового — более чем в 2,5 раза выше, чем манильского. В то же время масса синтетических тросов на 10 % меньше, чем растительных.

Разрывное усилие и масса сталь-ных тросов могут быть определены:

Где k и k 1 эмпирические коэффициенты, величина которых для различ-ных типов тросов указана в табл. 1;

d — диаметр троса, мм.

Чтобы правильно подобрать трос для работы, необходимо знать не только разрывное усилие, но и его рабочую прочность (допускаемое на-тяжение). Рабочая прочность — на-грузка, при которой трос может работать в данных условиях в тече-ние продолжительного времени без нарушения целости отдельных элементов и всего троса. Рабочая прочность Р (в ньютонах) составляет только некоторую часть разрывного усилия и определяется:

Где n — коэффициент запаса прочности.

Для тросов, применяемых на су-дах, n обычно принимается равным 6. Более точно он может быть выбран с учетом назначения, условий работы и типа троса. Так, для стоячего такелажа п понижается до 4, в устройствах для подъема людей по-вышается до 14.

Пример 1. Нормальный трехпрядный ма-нильский швартовный трос, длина окруж-ности 250 мм. Рассчитать разрывное усилие и рабочую крепость 100 м. троса и вес бухты троса в 200 м.

  • Н а х о д и м к о э ф ф и ц и е н т f = 650 — 0 , 75 × 250 100 = 4 , 625 ;
  • О п р е д е л я е м R = 4 , 625 × 250 2 = 289062 , 5 H ;
  • З а т е м о п р е д е л я е м Р = 29062 , 5 6 = 48177 , 1 H ;
  • Масса 100 м троса G = 0,007-250 2 = 437,5 кг. Масса бухты в 200 м будет в 2 раза больше, т. е. 875 кг.

Пример 2. Стальной гибкий буксирный трос диаметром 60 мм. Рассчитать разрыв-ное усилие и рабочую крепость 100 м. троса и вес бухты в 500 м. этого троса.

  • Выбираем из табл. 1 значе-ния & = 350 и k 1 =0,3;
  • Определяем R = 350 . 60 2 = 1 260 000 Н;
  • П р и н я в n = 5 , п о л у ч и м Р = 1260000 5 = 252000 H ;
  • Масса 100 м троса G = 0,3 . 60 2 = 1080 кг, а бухта в 500 м имеет G 5-1080 = 5400 кг.

Снабжение судов тросами произ-водится в соответствии с Правилами классификации и постройки морских судов Регистра СССР.

Прочность и долговечность тросов зависит не только от их кон-струкции и качества, но и от правильной эксплуатации, порядка хранения и ухода за ними. Хороший трос может быстро прийти в негодность, если не соблюдать элемен-тарных правил технической эксплуа-тации и использовать его в непод-ходящих условиях.

Выявление доброкачественности троса зависит от правильной прием-ки. При получении троса следует тщательно осмотреть его и проверить основные конструктивные данные и наличие сертификата с биркой. При осмотре стальных тро-сов проверяют целостность оцинковки, наличие ржавчины, сохранность проволоки и плотность прилегания проволок в прядях. Принимая растительные тросы, необходимо обратить внимание на их запах и цвет, так как затхлый запах указывает на наличие гнили и плесени.

Смоленый трос должен быть однородного светло-коричневого цвета, не иметь пятен, не липнуть к рукам и не издавать треска при разгибании. Липкость троса указывает на излишнее количество смолы, а сухой треск — на залежалость троса.

Сохранность троса в значитель-ной мере обеспечивается правильными приемами распускания бухт (рис. 4), не допускающими образо-вания петель и заломов (колышек), так как заломы вызывают значитель-ную местную деформацию тросов и разрыв отдельных проволок, а также затрудняют работу с тросами.

Бухту растительного троса при распускании ставят на ребро, сни-мают обвязку и, продев внутренний конец троса через внутреннюю по-лость бухты, распускают ее, придер-живая наружные шлаги руками.

Для распускания бухты стального троса надо, придерживая бухту за крайние шлаги, раскатывать ее по па-лубе и одновременно тянуть за ходо-вой конец. Толстый стальной трос обычно получают на судно намотан-ным на барабан. В этом случае лучше всего трос сматывать с вра-щающегося барабана, установив его в горизонтальное положение на две опоры.


Рис. 4 Распускание бухты троса: а — растительного; б и в — стального

Распущенные из бухты тросы сле-дует растянуть по палубе, чтобы они расправились, а затем разрезать на куски нужной длины. Для того чтобы в месте разреза трос не раскрутился, по обе стороны от этого места его предварительно обвязывают мягкой проволокой или каболкой накладывают марки. Разрезанный трос наматывают на вьюшки или хранят в небольших бухтах. От действия влаги трос предохраняет чехол, который надевают на вьюшку. В хо-рошую погоду чехол необходимо снимать, чтобы просушить трос.

Растительные тросы обычно хра-нят в небольших, свободно уложенных бухтах. Тросы укладывают в бух-ту взакрут, т.е. тросы тросовой работы прямого спуска — по часовой стрелке, а тросы обратного спуска и кабельной работы — против часо-вой стрелки. Для предохранения от действия влаги бухты раститель-ного троса подвешивают или уклады-вают на решетки (банкетки).

Во вре-мя дождя или свежей погоды бухты следует укрывать брезентами или чехлами. Все неиспользуемые тросы должны храниться в сухих, хорошо вентилируемых помещениях. Время от времени тросы необходимо тщательно проветривать, для чего их следует развесить на поручнях, между мачтами или в других удоб-ных местах.

Тросы, бывшие в употреблении, перед укладкой в бухты хорошо просушивают Растительные тросы, намокшие в морской воде, перед просушкой рекомендуется промыть пресной водой. Для промывки боль-ших тросов можно использовать за-ходы судна в устья рек, где трос можно промыть за бортом в речной воде.

Синтетические тросы не боятся влаги, и просушка их необязатель-на, но наматывать мокрый трос на вьюшку нельзя. Просушивать трос следует в тени, так как он портится от действия солнечных лучей. При загрязнении трос можно промывать морской водой. Синтетические тро-сы очень чувствительны к истиранию и оплавлению, поэтому поверхности барабанов должны быть гладкими.

При эксплуатации на поверхности синтетических тросов накапливается статическое электричество, что мо-жет явиться причиной образования искр. Поэтому на танкерах новые синтетические тросы можно приме-нять только после антистатической обработки вымачивания в течение суток в морской воде соленостью не менее 20%, или в специально приготовленном солевом растворе (20 кг поваренной соли на 1 м 3 воды). В процессе эксплуатации тро-сы необходимо периодически, не реже 1 раза в 2 мес. скатывать на палубе соленой забортной водой, о чем де-лают запись в вахтенном журнале.

Тщательного ухода требуют также комбинированные тросы, имеющие рубашку из растительных каболок. Эти тросы нельзя укладывать в бухты сырыми или влажными, так как ос-тавшаяся в рубашке влага может вызвать интенсивную коррозию проволоки.

Стальные тросы следует система-тически смазывать (тировать). Это не только предохраняет трос от коррозии, но, снижая трение между проволоками, способствует уменьшению износа. В качестве смазочного материала обычно используют канатную смазку НМЗ-З или ЗЗТ. Нетированные тросы необходимо не реже 1 раза в месяц смазывать тавотом. Состав тира: 87% тавота, 10% биту-ма, 3% графита.

На современном рынке представлено около четырех десятков разновидностей стального каната. Все они изготавливаются в строгом соответствии с ГОСТами, но при этом могут сильно отличаться друг от друга. Чтобы разобраться в этом, необходимо изучить классификацию канатов.

Критерии выбора стальных канатов

У людей, которые постоянно работают с металлическими тросами и канатами, проблемы с их выбором практически не возникают. Неприятности начинаются тогда, когда для работы требуется нестандартный канат. В этом случае нужно воспользоваться ГОСТ, в котором описана точная классификация.

Согласно этому ГОСТ, все металлические канаты могут различаться по таким параметрам, как:

  • тип конструкции;
  • тип поперечного сечения проволоки;
  • тип, способ и направление деталей свивки;
  • материал сердечника;
  • степень уравновешенности и крутимости;
  • максимальный уровень прочности;
  • механические свойства проволоки;
  • назначение.

Главной конструктивной особенностью всех стальных канатов является количество прядей (косичек) и способ их свивки. Согласно этому признаку, свивка может быть одинарной, двойной или даже тройной. В первом случае проволока скручивается спиралеобразно в один или несколько слоев. Если трос сверху еще покрыт фасонной проволокой, то его называют закрытым.

Тросы с двойной свивкой состоят из тонких одиночных прядей, количество которых может достигать шести. Именно их используют и для изготовления канатов тройной свивки.

Классификация канатов по параметрам свивки

Свивкой называют процесс закручивания прядей металлического каната. Пряди могут касаться друг друга точечно, линейно или комбинированным способом. Пряди разных слоев могут иметь одинаковый или различный диаметр. Если между ними проложены проволоки заполнения, то канат маркируется как «ЛК-З». В том случае, если между прядями проложены проволоки разных диаметров, это канат ЛК-РО.

Иногда в процессе производства проволока и пряди проходят через предварительную деформацию. Это делается для того, чтобы получить нераскручивающийся канат. Если же пряди распадаются сразу после удаления удерживающих завязок, значит, перед вами раскручивающийся канат.

Направление свивки металлического каната может быть правым или левым. При этом учитывается не только положение прядей наружного слоя, но и их положение по отношению к самому канату. По этому признаку свивка может быть:

  • крестовая,
  • односторонняя,
  • комбинированная.

Виды канатов по типу сердечника

Сердечник расположен в самом центре стального каната и необходим для придания ему необходимой гибкости и прочности. При его производстве обычно используется металл или органические материалы. Канаты с металлическим сердечником используются для решения таких задач, как:

  • повышение структурной прочности,
  • повышение износостойких свойств при работе в условиях высокой температуры,
  • снижение конструктивных удлинений при натяжении.

Органический сердечник металлических канатов может быть изготовлен из натуральных материалов или материалов, полученных синтетическим путем. Обычно это хлопчатобумажные нити, полиэтилен, капрон и другое.

Типы канатов по степени уравновешенности и крутимости

Уравновешенность металлического каната определяется по тому, была ли использована в процессе его производства рихтовка. Она снимает напряжение с прядей, когда они подвешены в горизонтальном положении. Именно благодаря этому изделие сохраняет свою прямолинейность.

Если находясь в горизонтальном положении, канат на конце закручивается в кольцо, значит, при его производстве рихтовка не проводилась.

Чтобы определить степень крутимости каната, нужно изучить направление всех прядей свивки. Они могут иметь одинаковое направление по всем слоям (крутящиеся) или обратное направление по разным слоям (малокрутящиеся).

Другие характеристики металлических канатов

Во время покупки металлических тросов нужно обратить внимание на качество проволоки, а также точность изготовления. Обычно при их производстве используется проволока нормального, высокого или повышенного качества. Она может быть покрыта оцинкованным или полимерным слоем, который защищает ее от средних, жестких или особо жестких агрессивных сред.

Может быть использован для подъема и перевозки только грузов или же груза и людей. Чтобы определить его прочностные характеристики, нужно обратить внимание на самое последнее значение в маркировке. Оно может быть в пределах 1370-1770 н/мм2. Чем выше прочностные характеристики металлического каната, тем больше нагрузки он сможет выдержать.


Общие сведения. На судах морского флота используют растительные, стальные, комбинированные и синтетические тросы. Основными эксплуатационными характеристиками тросов являются их прочность (разрывная и рабочая), эластичность, гибкость и масса, а также устойчивость к воздействию внешних факторов – воды, микроорганизмов, химических веществ, солнца и т. п.

Разрывная прочность троса R (кгс) определяется минимальным усилием растяжения, при котором трос начинает разрушаться (рваться). В судовых условиях такую прочность можно рассчитать по эмпирической формуле

где k – коэффициент прочности (табл. 1);

C – окружность троса, мм.

Рабочей прочностью троса называется максимальная нагрузка, при которой трос способен работать в конкретных условиях в течение длительного времени. В практике рабочая прочность троса принимается равной в зависимости от условий эксплуатации и назначения троса, от 1/6 до 1/10, а для подъемных машин (стальной трос) – до 1/20 разрывной прочности.

Эластичностью , или упругостью троса называют его способность удлиняться под нагрузкой и возвращаться к первоначальному состоянию без остаточных деформаций после снятия нагрузки. Эластичность сохраняется в тросах при относительно небольших нагрузках по сравнению с его разрывной прочностью. При значительных же нагрузках, даже после их снятия, у тросов остается определенное удлинение – остаточная деформация , которая снижает прочность троса. В этой связи для троса устанавливается максимальная рабочая нагрузка, в большинстве случаев не превышающая 1/6 разрывной прочности.

Растительные тросы (рис. 1) изготавливают из волокон стеблей, листьев или коры. На судах морского флота применяют растительные тросы – пеньковые (из волокна конопли), манильские (из волокна прядильного банана), сизальские (из волокон листьев агавы).

Рис. 1. Структура растительных тросов:

1 – каболка; 2 – прядь; 3 – трос тросовой работы; 4 – трос кабельной работы; 5 – трос трехпрядный; 6 – трос четырехпрядный с сердечником; 7 – стрендь; 8 – волокна

Для изготовления троса волокна свивают в нити (по часовой стрелке – слева направо), называемые каболками. Из нескольких каболок свивают в прядь (справо налево). Свивая между собой три и более прядей (слева направо), получают так называемый трос тросовой работы прямого спуска; трос тросовой работы обратного спуска свивают в обратном порядке. Если свить между собой несколько тросов тросовой работы (каждый из которых в этом случае называют стрендью), то получают трос кабельной работы, прочность которого ниже на 25% троса тросовой работы той же толщины, но он более эластичен и лучше просыхает.

В технической терминологии тросы тросовой работы называют обыкновенными, а кабельные – отворотными.

Толщина растительных тросов измеряется по их окружности в миллиметрах. Тросы кабельные от 100 до 150 мм называют перлинями, от 150 – 350 мм – кабельтовами, а свыше 350 мм – канатами.

Растительные тросы окружностью 25 мм и менее называют линями. Пряди в лине принято называть нитями. Линь в две нити, изготовленный из низкосортной бородочной пеньки, называют шкимушкаром; он используется на тканье матов и другие такелажные работы. К линям специального назначения относятся льняные, плетеные шнуры, из которых изготавливают лотлини, лаглини, сигнальные фалы и др.

Пеньвовые тросы, изготовленные из непросмоленных каболок пеньки, называют бельными, а из просмоленных – смолеными. Просмолка троса делается для предохранения его от гниения.

Пеньковые тросы тросовой работы (обыкновенные) изготавливают бельными и смолеными, а кабельной работы (отворотные) – только смоленые. Смоленый трос слабее бельного примерно на 5%, а масса больше на 11-18%; срок его службы продолжительнее бельного. При нагрузке пеньковые тросы могут удлиняться на 8-10% без нарушения их прочности. Пеньковые бельные тросы тросовой работы рекомендуется использовать для изготовления бегучего такелажа шлюпок, лееров, стропов. Смоленые тросы тросовой работы применяют в качестве швартовов, а также для изготовления грузовых сеток.

Манильские тросы, как правило, выпускаются бельными; при нагрузке, равной половине разрывной, эти тросы могут удлиняться на 15-17%. Они намокают медленнее и потому длительное время не тонут в воде, не теряя эластичности и гибкости под давлением влаги. Манильские тросы применяются для бегучего такелажа, швартовов, грузовых шкентелей, буксиров, бросательных концов.

Сизальские тросы выпускают, как правило, также бельными. По прочности они уступают пеньковым и манильским. При разрывной нагрузке их относительное удлинение – около 20%. Такой трос плавает в воде, но легко впитывает ее. Сизальские тросы используют для изготовления лееров, швартовов, оттяжек и т.д.

Примерный срок службы растительного троса кабельной работы – три года, перлиней – два года, прочих тросов – около одного года.

Стальные тросы, используемые на судах морского флота, изготавливают из углеродистой, оцинкованной или неоцинкованной проволоки толщиной от 0,4 до 3,0 мм.

Стальные тросы состоят из прядей, которые образуются путем свивки проволок в один или несколько рядов вокруг одной центральной проволоки либо вокруг пенькового промасленного сердечника, предохраняющего прядь от ржавчины и обеспечивающего ей большую гибкость. Стальные тросы в зависимости от количества прядей в них бывают одинарной, двойной и тройной свивки. Тросы одинарной свивки состоят из одной пряди; двойной свивки – подобно растительным тросам тросовой работы состоят из нескольких прядей, чаще всего из шести, свитых вокруг одного общего сердечника (растительного или металлического); тройной свивки – из нескольких тросов двойной свивки, свитых между собой.

В зависимости от толщины проволоки и характера свивки стальные тросы могут быть жесткими и гибкими.

Жесткий трос выделывают из толстых проволок без сердечника или с одним органическим сердечником; это самый крепкий из стальных тросов; он употребляется для стоячего такелажа.

Гибкий трос – эластичный, его изготавливают из тонких проволок; каждая прядь имеет сердечник из растительных волокон; употребляют для бегучего такелажа, швартовов, буксиров, тралов, подъемных устройств.

Толщина стального троса определяется по его диаметру. По требованию заказчика стальные тросы могут выпускаться бухтами любой длинны; обычная же длинна бухты стального троса – 250, 500, 750 м. Относительное удлинение стальных тросов невелико, не более 3%.

Преимущество стальных тросов перед растительными заключается в том, что они легче и тоньше, но быстрее портятся от крутых изгибов и менее гибкие.

Комбинированные тросы изготавливают из проволочных прядей, покрытых пеньковой пряжей. К ним относятся тросы типа “Геркулес”, которые применяют в качестве швартовов и буксиров.

Синтетические тросы свивают из нитей различных искусственных волокон: капрона, нейлона, лавсана, полипропилена и др. По своему внешнему виду и конструкции они напоминают растительные. В последнее время стали применять полипропиленовые плетеные тросы. Синтетические тросы легче, более эластичны и в 2 - 2,5 раза прочнее, чем пеньковые той же толщины; к тому же они не подвержены гниению, коррозии. К числу недостатков синтетических тросов следует отнести то, что при разрыве они подобно резине, сокращаются с большой силой, отлетают назад и создают большую опасность для людей, работающих с ними; при трении синтетические тросы способны накапливать заряд статического электричества, при разряде которого искрообразование может привести к порче троса, а так же к возникновению пожара.

Синтетические тросы применяют на морском флоте в качестве буксиров, швартовов и других случаях, когда может быть использована их высокая эластичность. Сравнительные данные стального, пенькового и капронового тросов приведены в табл. 2.

Такелажные цепи – цепи, предназначенные для судового такелажа. Их звенья делают без контрфорсов из круглого железа, по диаметру которого определяется размер цепи. Бывают короткозвенные и длиннозвенные такелажные цепи; последние применяют, как правило, для стопоров у топенантов стрел.

Такелажная цепь примерно в три раза прочнее стального троса того же диаметра и в восемь раз прочнее пенькового. К ее недостаткам следует отнести большую массу и незначительную эластичность при натяжении, а также опасность разрыва при низких температурах воздуха. Величину рабочего усилия P (кгс), допускаемого на такелажную цепь, можно приближенно определить по формуле:

где d – диаметр круглого железа, мм.

Цепь, у которой износ венцов достиг 10% и более от первоначального диаметра, считается негодной.



Поделиться: